Improving the power conversion efficiency of organic solar cells is the essential theme for future application. Open-circuit voltage (Voc) loss of photovoltaic devices is a serious problem preventing performance enhancement. Here, in block copolymer based photovoltaic devices, we study intramolecular charge transfer (intra-CT) states dependent Voc loss (Vloss) through involving multi-beam excitation together with the magnetic field. Along with generating substantial intra-CT states in organic solar cells, the performance of Voc is improved. Magnetic field could increase triplet intra-CT states in copolymer to further decrease Vloss. Furthermore, intra-CTs could result in larger charge dissociation to induce photoluminescence quenching. Overall, we observe that intra-CT states in block copolymer play an important role for the Voc performance in organic solar cells.

1.
A. J.
Heeger
,
Adv. Mater.
26
(
1
),
10
(
2014
);
[PubMed]
L.
Dou
,
J.
You
,
Z.
Hong
,
Z.
Xu
,
G.
Li
,
R. A.
Street
, and
Y.
Yang
,
Adv. Mater.
25
(
46
),
6642
(
2013
).
[PubMed]
2.
G.
Konstantatos
and
E. H.
Sargent
,
Nat. Nanotechnol.
5
,
391
(
2010
);
[PubMed]
X.
Gong
,
M.
Tong
,
Y.
Xia
,
W.
Cai
,
J. S.
Moon
,
Y.
Cao
,
G.
Yu
,
C.-L.
Shieh
,
B.
Nilsson
, and
A. J.
Heeger
,
Science
325
(
5948
),
1665
(
2009
).
[PubMed]
3.
Q.
Zhang
,
Y.
Sun
,
W.
Xu
, and
D.
Zhu
,
Adv. Mater.
26
(
40
),
6829
(
2014
).
4.
Y.
Sun
,
P.
Sheng
,
C.
Di
,
F.
Jiao
,
W.
Xu
,
D.
Qiu
, and
D.
Zhu
,
Adv. Mater.
24
(
7
),
932
(
2012
).
5.
E.
Escasaín
,
E.
López-Elvira
,
A. M.
Baró
,
J.
Colchero
, and
E.
Palacios-Lidón
,
J. Phys. Chem. C
116
(
33
),
17919
(
2012
).
6.
J.
Liu
,
S.
Chen
,
D.
Qian
,
B.
Gautam
,
G.
Yang
,
J.
Zhao
,
J.
Bergqvist
,
F.
Zhang
,
W.
Ma
,
H.
Ade
,
O.
Inganäs
,
K.
Gundogdu
,
F.
Gao
, and
H.
Yan
,
Nat. Energy
1
,
16089
(
2016
).
7.
Z.
Zheng
,
O. M.
Awartani
,
B.
Gautam
,
D.
Liu
,
Y.
Qin
,
W.
Li
,
A.
Bataller
,
K.
Gundogdu
,
H.
Ade
, and
J.
Hou
,
Adv. Mater.
29
(
5
),
1604241
(
2017
);
B.
Xiao
,
A.
Tang
,
J.
Zhang
,
A.
Mahmood
,
Z.
Wei
, and
E.
Zhou
,
Adv. Energy Mater.
7
(
8
),
1602269
(
2017
);
H.
Cha
,
J.
Wu
,
A.
Wadsworth
,
J.
Nagitta
,
S.
Limbu
,
S.
Pont
,
Z.
Li
,
J.
Searle
,
M. F.
Wyatt
,
D.
Baran
,
J.-S.
Kim
,
I.
McCulloch
, and
J. R.
Durrant
,
Adv. Mater.
29
(
33
),
1701156
(
2017
);
W.
Zhao
,
D.
Qian
,
S.
Zhang
,
S.
Li
,
O.
Inganäs
,
F.
Gao
, and
J.
Hou
,
Adv. Mater.
28
(
23
),
4734
(
2016
);
[PubMed]
L.
Nian
,
K.
Gao
,
F.
Liu
,
Y.
Kan
,
X.
Jiang
,
L.
Liu
,
Z.
Xie
,
X.
Peng
,
T. P.
Russell
, and
Y.
Ma
,
Adv. Mater.
28
(
37
),
8184
(
2016
).
[PubMed]
8.
W.
Zeng
,
H.-Y.
Lai
,
W.-K.
Lee
,
M.
Jiao
,
Y.-J.
Shiu
,
C.
Zhong
,
S.
Gong
,
T.
Zhou
,
G.
Xie
,
M.
Sarma
,
K.-T.
Wong
,
C.-C.
Wu
, and
C.
Yang
,
Adv. Mater.
30
,
1704961
(
2018
).
9.
G.
Garcia-Belmonte
,
P. P.
Boix
,
J.
Bisquert
,
M.
Lenes
,
H. J.
Bolink
,
A.
La Rosa
,
S.
Filippone
, and
N.
Martín
,
J. Phys. Chem. Lett.
1
(
17
),
2566
(
2010
).
10.
L. G.
Kaake
,
P. F.
Barbara
, and
X. Y.
Zhu
,
J. Phys. Chem. Lett.
1
(
3
),
628
(
2010
).
11.
I. N.
Hulea
,
H. B.
Brom
,
A. J.
Houtepen
,
D.
Vanmaekelbergh
,
J. J.
Kelly
, and
E. A.
Meulenkamp
,
Phys. Rev. Lett.
93
(
16
),
166601
(
2004
).
12.
J.
Yu
,
Y.
Xi
,
C.-C.
Chueh
,
J.-Q.
Xu
,
H.
Zhong
,
F.
Lin
,
S. B.
Jo
,
L. D.
Pozzo
,
W.
Tang
, and
A. K. Y.
Jen
,
Nano Energy
39
,
454
(
2017
).
13.
Z.
Xiao
,
X.
Jia
, and
L.
Ding
,
Sci. Bull.
62
,
1562
(
2017
).
14.
L. J. A.
Koster
,
V. D.
Mihailetchi
,
R.
Ramaker
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
86
(
12
),
123509
(
2005
).
15.
P.
Boland
,
K.
Lee
, and
G.
Namkoong
,
Sol. Energy Mater. Sol. Cells
94
(
5
),
915
(
2010
).
16.
Y.
Lin
,
F.
Zhao
,
Y.
Wu
,
K.
Chen
,
Y.
Xia
,
G.
Li
,
S. K. K.
Prasad
,
J.
Zhu
,
L.
Huo
,
H.
Bin
,
Z.-G.
Zhang
,
X.
Guo
,
M.
Zhang
,
Y.
Sun
,
F.
Gao
,
Z.
Wei
,
W.
Ma
,
C.
Wang
,
J.
Hodgkiss
,
Z.
Bo
,
O.
Inganäs
,
Y.
Li
, and
X.
Zhan
,
Adv. Mater.
29
(
3
),
1604155
(
2017
).
17.
G.
Li
,
V.
Shrotriya
,
J.
Huang
,
Y.
Yao
,
T.
Moriarty
,
K.
Emery
, and
Y.
Yang
,
Nat. Mater.
4
,
864
(
2005
).
18.
J.
Wang
,
A.
Chepelianskii
,
F.
Gao
, and
N. C.
Greenham
,
Nat. Commun.
3
,
1191
(
2012
);
[PubMed]
Z.
An
,
C. Q.
Wu
, and
X.
Sun
,
Phys. Rev. Lett.
93
(
21
),
216407
(
2004
).
[PubMed]
19.
M. C.
Fravventura
,
J.
Hwang
,
J. W. A.
Suijkerbuijk
,
P.
Erk
,
L. D. A.
Siebbeles
, and
T. J.
Savenije
,
J. Phys. Chem. Lett.
3
(
17
),
2367
(
2012
);
[PubMed]
D.
Amarasinghe Vithanage
,
A.
Devižis
,
V.
Abramavičius
,
Y.
Infahsaeng
,
D.
Abramavičius
,
R. C. I.
MacKenzie
,
P. E.
Keivanidis
,
A.
Yartsev
,
D.
Hertel
,
J.
Nelson
,
V.
Sundström
, and
V.
Gulbinas
,
Nat. Commun.
4
,
2334
(
2013
).
[PubMed]
20.
N. K.
Elumalai
and
A.
Uddin
,
Energy Environ. Sci.
9
(
2
),
391
(
2016
).
21.
Y.
Zhang
,
T. P.
Basel
,
B. R.
Gautam
,
X.
Yang
,
D. J.
Mascaro
,
F.
Liu
, and
Z.
Valy Vardeny
,
Nat. Commun.
3
,
1043
(
2012
).
22.
S. J.
Xie
,
K. H.
Ahn
,
D. L.
Smith
,
A. R.
Bishop
, and
A.
Saxena
,
Phys. Rev. B
67
(
12
),
125202
(
2003
).
23.
J. D.
Bergeson
,
V. N.
Prigodin
,
D. M.
Lincoln
, and
A. J.
Epstein
,
Phys. Rev. Lett.
100
(
6
),
067201
(
2008
);
[PubMed]
A.
Rao
,
P. C. Y.
Chow
,
S.
Gélinas
,
C. W.
Schlenker
,
C.-Z.
Li
,
H.-L.
Yip
,
A. K. Y.
Jen
,
D. S.
Ginger
, and
R. H.
Friend
,
Nature
500
,
435
(
2013
).
[PubMed]
24.
W.
Qin
,
K.
Gao
,
S.
Yin
, and
S. J.
Xie
,
J. Appl. Phys.
113
(
19
),
193901
(
2013
).
25.
A. A.
Bakulin
,
A.
Rao
,
V. G.
Pavelyev
,
P. H. M.
van Loosdrecht
,
M. S.
Pshenichnikov
,
D.
Niedzialek
,
J.
Cornil
,
D.
Beljonne
, and
R. H.
Friend
,
Science
335
(
6074
),
1340
(
2012
).

Supplementary Material

You do not currently have access to this content.