We investigate the effect of hafnium (Hf) dusting on the magnetodynamical properties of NiFe/Pt bilayers using spin-torque-induced ferromagnetic resonance measurements on 6 μm wide microstrips on high-resistive Si substrates. Based on two series of NiFe(tNiFe)/Hf(tHf)/Pt(5) stacks, we first demonstrate that the zero-current magnetodynamic properties of the devices benefit from Hf dusting: (i) the effective magnetization of the NiFe layer increases by 4%–8% with Hf present and (ii) the damping α decreases linearly with tHf by up to 40%. The weaker anisotropic magnetoresistance (AMR ≃ 0.3%–0.4%) of the 3 nm NiFe series is largely unaffected by the Hf, while the stronger AMR of the 5 nm NiFe series drops from 0.7% to 0.43% with increasing tHf. We find that the spin Hall efficiency ξSH is independent of the NiFe thickness, remaining unaffected (ξSH = 0.115) up to tHf = 0.4 nm and then decreasing linearly for higher tHf. The different trends of α and ξSH suggest that there is an optimum Hf thickness (≃0.4 nm) for which the threshold current for auto-oscillation should have a minimum, while the much lower damping should improve mutual synchronization. Our results also indicate that the spin-orbit torque is entirely damping-like with no field-like torque component. Finally, the internal spin Hall angle of Pt is estimated to be θSH = 0.22 by calculating the transparency of the interface.

1.
J. E.
Hirsch
,
Phys. Rev. Lett.
83
,
1834
(
1999
).
2.
S.
Zhang
,
Phys. Rev. Lett.
85
,
393
(
2000
).
3.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Science
306
,
1910
(
2004
).
4.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
,
Appl. Phys. Lett.
88
,
182509
(
2006
).
5.
S. O.
Valenzuela
and
M.
Tinkham
,
Nature
442
,
176
(
2006
).
6.
V. E.
Demidov
,
S.
Urazhdin
,
A.
Zholud
,
A. V.
Sadovnikov
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
105
,
172410
(
2014
).
7.
T.
Chen
,
R. K.
Dumas
,
A.
Eklund
,
P. K.
Muduli
,
A.
Houshang
,
A. A.
Awad
,
P.
Dürrenfeld
,
B. G.
Malm
,
A.
Rusu
, and
J.
Åkerman
,
Proc. IEEE
104
,
1919
1945
(
2016
).
8.
P.
Durrenfeld
,
A. A.
Awad
,
A.
Houshang
,
R. K.
Dumas
, and
J.
Åkerman
,
Nanoscale
9
,
1285
1291
(
2017
).
9.
P.
Dürrenfeld
,
F.
Gerhard
,
M.
Ranjbar
,
C.
Gould
,
L. W.
Molenkamp
, and
J.
Åkerman
,
J. Appl. Phys
117
,
17E103
(
2015
).
10.
M.
Ranjbar
,
P.
Dürrenfeld
,
M.
Haidar
,
E.
Iacocca
,
M.
Balinskiy
,
T. Q.
Le
,
M.
Fazlali
,
A.
Houshang
,
A. A.
Awad
,
R. K.
Dumas
, and
J.
Åkerman
,
IEEE Magn. Lett.
5
,
3000504
(
2014
).
11.
W.
Zhang
,
W.
Han
,
X.
Jiang
,
S.-H.
Yang
, and
S. S. P.
Parkin
,
Nat. Phys.
11
,
496
502
(
2015
).
12.
W.
Skowroński
,
S.
Zitek
,
M.
Cecot
,
T.
Stobiecki
,
J.
Wrona
,
K.
Yakushiji
,
T.
Nozaki
,
H.
Kubota
, and
S.
Yuasa
, in
2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON)
(
2016
), pp.
1
3
.
13.
M.
Zahedinejad
,
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
Y.
Yin
,
P. K.
Muduli
, and
J.
Åkerman
,
IEEE Magn. Lett.
8
,
3704804
(
2017
).
14.
D.
Fan
,
S.
Maji
,
K.
Yogendra
,
M.
Sharad
, and
K.
Roy
,
IEEE Trans. Nanotechnol.
14
,
1083
1093
(
2015
).
15.
T.
Kendziorczyk
and
T.
Kuhn
,
Phys. Rev. B
93
,
134413
(
2016
).
16.
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
M.
Dvornik
,
E.
Iacocca
,
R. K.
Dumas
, and
J.
Åkerman
,
Nat. Phys.
13
,
292
(
2017
).
17.
M.
Dvornik
,
A. A.
Awad
, and
J.
Åkerman
,
Phys. Rev. Appl.
9
,
014017
(
2018
).
18.
H.
Mazraati
,
S.
Chung
,
A.
Houshang
,
M.
Dvornik
,
L.
Piazza
,
F.
Qejvanaj
,
S.
Jiang
,
T. Q.
Le
,
J.
Weissenrieder
, and
J.
Åkerman
,
Appl. Phys. Lett.
109
,
242402
(
2016
).
19.
M.
Zahedinejad
,
H.
Mazraati
,
H.
Fulara
,
J.
Yue
,
S.
Jiang
,
A. A.
Awad
, and
J.
Åkerman
,
Appl. Phys. Lett.
112
,
132404
(
2018
).
20.
C.-F.
Pai
,
L.
Liu
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
101
,
122404
(
2012
).
21.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Science
336
,
555
(
2012
).
22.
T.
Wang
,
W.
Wang
,
Y.
Xie
,
M. A.
Warsi
,
J.
Wu
,
Y.
Chen
,
V. O.
Lorenz
,
X.
Fan
, and
J. Q.
Xiao
,
Sci. Rep.
7
,
1306
(
2017
).
23.
C.-F.
Pai
,
Y.
Ou
,
L. H.
Vilela-Leão
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. B
92
,
064426
(
2015
).
24.
S.
Shi
,
Y.
Ou
,
S. V.
Aradhya
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Appl.
9
,
011002
(
2018
).
25.
M.-H.
Nguyen
,
C.-F.
Pai
,
K. X.
Nguyen
,
D. A.
Muller
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
106
,
222402
(
2015
).
26.
M. L.
Polianski
and
P. W.
Brouwer
,
Phys. Rev. Lett.
92
,
026602
(
2004
).
27.
J.
Sankey
,
P.
Braganca
,
A.
Garcia
,
I.
Krivorotov
,
R.
Buhrman
, and
D.
Ralph
,
Phys. Rev. Lett.
96
,
227601
(
2006
).
28.
J. C.
Sankey
,
Y.-T.
Cui
,
J. Z.
Sun
,
J. C.
Slonczewski
,
R. A.
Buhrman
, and
D. C.
Ralph
,
Nat. Phys.
4
,
67
(
2008
).
29.
W.
Chen
,
G.
de Loubens
,
J.-M. L.
Beaujour
,
J. Z.
Sun
, and
A. D.
Kent
,
Appl. Phys. Lett.
95
,
172513
(
2009
).
30.
X.
Cheng
,
J. A.
Katine
,
G. E.
Rowlands
, and
I. N.
Krivorotov
,
Appl. Phys. Lett.
103
,
082402
(
2013
).
31.
M.
Collet
,
X.
de Milly
,
O.
d'Allivy Kelly
,
V. V.
Naletov
,
R.
Bernard
,
P.
Bortolotti
,
J.
Ben Youssef
,
V. E.
Demidov
,
S. O.
Demokritov
,
J. L.
Prieto
,
M.
Muñoz
,
V.
Cros
,
A.
Anane
,
G.
de Loubens
, and
O.
Klein
,
Nat. Commun.
7
,
10377
(
2016
).
32.
L.
Liu
,
T.
Moriyama
,
D.
Ralph
, and
R.
Buhrman
,
Phys. Rev. Lett.
106
,
036601
(
2011
).
33.
C.
Kittel
,
Phys. Rev.
73
,
155
(
1948
).
34.
Y.
Ou
,
C.-F.
Pai
,
S.
Shi
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. B
94
,
140414
(
2016
).
35.
K.-U.
Demasius
,
T.
Phung
,
W.
Zhang
,
B. P.
Hughes
,
S.-H.
Yang
,
A.
Kellock
,
W.
Han
,
A.
Pushp
, and
S. S. P.
Parkin
,
Nat. Commun.
7
,
10644
(
2016
).
36.
K.
Ando
,
S.
Takahashi
,
K.
Harii
,
K.
Sasage
,
J.
Ieda
,
S.
Maekawa
, and
E.
Saitoh
,
Phys. Rev. Lett.
101
,
036601
(
2008
).
37.
L.
Liu
,
R. A.
Buhrman
, and
D. C.
Ralph
, preprint arXiv:1111.3702 [cond-mat.mes-hall] (
2011
).
38.
W.
Zhang
,
V.
Vlaminck
,
J. E.
Pearson
,
R.
Divan
,
S. D.
Bader
, and
A.
Hoffmann
,
Appl. Phys. Lett.
103
,
242414
(
2013
).
You do not currently have access to this content.