Layered materials are known to exhibit a variety of charge-density wave (CDW) phases due to their quasi-two dimensional nature. Of particular interest is the CDW phase in a prototypical layered transition-metal dichalcogenide (TMDC) TiSe2, where the CDW is known to form with commensurate 2a × 2a × 2c structural distortion at T = 200 K (where a and c are the lattice parameters). Recent experimental studies have revealed intriguing aspects of this material as represented by the emergence of superconductivity upon electron doping and possible existence of the excitonic insulator phase, making TiSe2 attractive as a model material for investigation of collective phenomena in TMDC. However, the evolution of the CDW phase at nanometer-scale thickness, at least below 10 monolayers (6 nm), has not been well investigated yet, in particular from transport viewpoints, presumably due to difficulty in fabrication of such ultrathin samples by conventional approaches. Here, we report the transport properties of a few nanometer-thick highly crystalline TiSe2 epitaxial thin films grown on insulating Al2O3 substrates by molecular-beam epitaxy, demonstrating robust CDW transitions down to 5 monolayers (3 nm). We also clarify an interesting aspect of van der Waals epitaxy, a “self-rotational” growth without strain, which should be realized only in a system having a weak substrate-film interaction.

1.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
2.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
1275
(
2010
).
3.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
,
Nat. Nanotechnol.
7
,
490
493
(
2012
).
4.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
,
Nat. Nanotechnol.
7
,
494
498
(
2012
).
5.
T.
Cao
,
G.
Wang
,
W.
Han
,
H.
Ye
,
C.
Zhu
,
J.
Shi
,
Q.
Niu
,
P.
Tan
,
E.
Wang
,
B.
Liu
, and
J.
Feng
,
Nat. Commun.
3
,
887
(
2012
).
6.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
,
Phys. Rev. Lett.
108
,
196802
(
2012
).
7.
K. F.
Mak
,
K. L.
McGill
,
J.
Park
, and
P. L.
McEuen
,
Science
344
,
1489
1492
(
2014
).
8.
M.
Onga
,
Y.
Zhang
,
T.
Ideue
, and
Y.
Iwasa
,
Nat. Mater.
16
,
1193
1197
(
2017
).
9.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
712
(
2012
).
10.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
,
Nat. Chem.
5
,
263
275
(
2013
).
11.
X.
Xu
,
W.
Yao
,
D.
Xiao
, and
T. F.
Heinz
,
Nat. Phys.
10
,
343
350
(
2014
).
12.
X.
Xi
,
Z.
Wang
,
W.
Zhao
,
J.-H.
Park
,
K. T.
Law
,
H.
Berger
,
L.
Forró
,
J.
Shan
, and
K. F.
Mak
,
Nat. Phys.
12
,
139
143
(
2016
).
13.
Z.
Fei
,
T.
Palomaki
,
S.
Wu
,
W.
Zhao
,
X.
Cai
,
B.
Sun
,
P.
Nguyen
,
J.
Finne
,
X.
Xu
, and
D. H.
Cobden
,
Nat. Phys.
13
,
677
682
(
2017
).
14.
S.
Tang
,
C.
Zhang
,
D.
Wong
,
Z.
Pedramrazi
,
H.-Z.
Tsai
,
C.
Jia
,
B.
Moritz
,
M.
Claassen
,
H.
Ryu
,
S.
Kahn
,
J.
Jiang
,
H.
Yan
,
M.
Hashimoto
,
D.
Lu
,
R. G.
Moore
,
C.-C.
Hwang
,
C.
Hwang
,
Z.
Hussain
,
Y.
Chen
,
M. M.
Ugeda
,
Z.
Liu
,
X.
Xie
,
T. P.
Devereaux
,
M. F.
Crommie
,
S.-K.
Mo
, and
Z.-X.
Shen
,
Nat. Phys.
13
,
683
687
(
2017
).
15.
S.
Wu
,
V.
Fatemi
,
Q. D.
Gibson
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Cava
, and
P.
Jarillo-Herrero
,
Science
359
,
76
79
(
2018
).
16.
F. J.
Di Salvo
,
D. E.
Moncton
, and
J. V.
Waszczak
,
Phys. Rev. B
14
,
4321
4328
(
1976
).
17.
E.
Morosan
,
H. W.
Zandbergen
,
B. S.
Dennis
,
J. W. G.
Bos
,
Y.
Onose
,
T.
Klimczuk
,
A. P.
Ramirez
,
N. P.
Ong
, and
R. J.
Cava
,
Nat. Phys.
2
,
544
550
(
2006
).
18.
H.
Luo
,
W.
Xie
,
J.
Tao
,
I.
Pletikosic
,
T.
Valla
,
G. S.
Sahasrabudhe
,
G.
Osterhoudt
,
E.
Sutton
,
K. S.
Burch
,
E. M.
Seibel
,
J. W.
Krizan
,
Y.
Zhu
, and
R. J.
Cava
,
Chem. Mater.
28
,
1927
1935
(
2016
).
19.
L. J.
Li
,
E. C. T.
O'Farrell
,
K. P.
Loh
,
G.
Eda
,
B.
Özyilmaz
, and
A. H. C.
Neto
,
Nature
529
,
185
189
(
2016
).
20.
H.
Cercellier
,
C.
Monney
,
F.
Clerc
,
C.
Battaglia
,
L.
Despont
,
M. G.
Garnier
,
H.
Beck
,
P.
Aebi
,
L.
Patthey
,
H.
Berger
, and
L.
Forró
,
Phys. Rev. Lett.
99
,
146403
(
2007
).
21.
C.
Monney
,
C.
Battaglia
,
H.
Cercellier
,
P.
Aebi
, and
H.
Beck
,
Phys. Rev. Lett.
106
,
106404
(
2011
).
22.
A.
Kogar
,
M. S.
Rak
,
S.
Vig
,
A. A.
Husain
,
F.
Flicker
,
Y. I.
Joe
,
L.
Venema
,
G. J.
MacDougall
,
T. C.
Chiang
,
E.
Fradkin
,
J.
van Wezel
, and
P.
Abbamonte
,
Science
358
,
1314
1317
(
2017
).
23.
P.
Goli
,
J.
Khan
,
D.
Wickramaratne
,
R. K.
Lake
, and
A. A.
Balandin
,
Nano Lett.
12
,
5941
5945
(
2012
).
24.
L. J.
Li
,
W. J.
Zhao
,
B.
Liu
,
T. H.
Ren
,
G.
Eda
, and
K. P.
Loh
,
Appl. Phys. Lett.
109
,
141902
(
2016
).
25.
L.
Sun
,
C.
Chen
,
Q.
Zhang
,
C.
Sohrt
,
T.
Zhao
,
G.
Xu
,
J.
Wang
,
D.
Wang
,
K.
Rossnagel
,
L.
Gu
,
C.
Tao
, and
L.
Jiao
,
Angew. Chem., Int. Ed.
56
,
8981
8985
(
2017
).
26.
J.
Wang
,
H.
Zheng
,
G.
Xu
,
L.
Sun
,
D.
Hu
,
Z.
Lu
,
L.
Liu
,
J.
Zheng
,
C.
Tao
, and
L.
Jiao
,
J. Am. Chem. Soc.
138
,
16216
16219
(
2016
).
27.
P.
Chen
,
Y.-H.
Chan
,
X.-Y.
Fang
,
Y.
Zhang
,
M. Y.
Chou
,
S.-K.
Mo
,
Z.
Hussain
,
A.-V.
Fedorov
, and
T.-C.
Chiang
,
Nat. Commun.
6
,
8943
(
2015
).
28.
P.
Chen
,
Y.-H.
Chan
,
M.-H.
Wong
,
X.-Y.
Fang
,
M. Y.
Chou
,
S.-K.
Mo
,
Z.
Hussain
,
A.-V.
Fedorov
, and
T.-C.
Chiang
,
Nano Lett.
16
,
6331
6336
(
2016
).
29.
K.
Sugawara
,
Y.
Nakata
,
R.
Shimizu
,
P.
Han
,
T.
Hitosugi
,
T.
Sato
, and
T.
Takahashi
,
ACS Nano
10
,
1341
1345
(
2016
).
30.
M.
Nakano
,
Y.
Wang
,
Y.
Kashiwabara
,
H.
Matsuoka
, and
Y.
Iwasa
,
Nano Lett.
17
,
5595
5599
(
2017
).
You do not currently have access to this content.