To harness the true potential of topological insulators as quantum materials for information processing, it is imperative to maximise topological surface state conduction while simultaneously improving their quantum coherence. However, these goals have turned out to be contradictory. Surface dominated transport in topological insulators has been achieved primarily through compensation doping of bulk carriers which introduces tremendous electronic disorder and drastically deteriorates electronic coherence. In this work, we use structural disorder instead of electronic disorder to manipulate the electrical properties of thin films of topological insulator Bi2Se3. We achieve decoupled surface state transport in our samples and observe significantly suppressed carrier dephasing rates in the coupled surface state regime. As the film thickness is decreased, the dephasing rate evolves from a linear to a super-linear temperature dependence. While the former is consistent with Nyquist electron-electron interactions, the latter leads to significantly enhanced coherence at low temperatures and is indicative of energy exchange due to frictional drag between the two surface states. Our work opens up the way to harness topological surface states, without being afflicted by the deleterious effects of compensation doping.

1.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
2.
X.-L.
Qi
and
S.-C.
Zhang
,
Rev. Mod. Phys.
83
,
1057
(
2011
).
3.
L.
Bao
,
L.
He
,
N.
Meyer
,
X.
Kou
,
P.
Zhang
,
Z.-G.
Chen
,
A. V.
Fedorov
,
J.
Zou
,
T. M.
Riedemann
,
T. A.
Lograsso
 et al,
Sci. Rep.
2
,
726
(
2012
).
4.
K.
Banerjee
,
J.
Son
,
P.
Deorani
,
P.
Ren
,
L.
Wang
, and
H.
Yang
,
Phys. Rev. B
90
,
235427
(
2014
).
5.
Y.
Xu
,
I.
Miotkowski
,
C.
Liu
,
J.
Tian
,
H.
Nam
,
N.
Alidoust
,
J.
Hu
,
C.-K.
Shih
,
M. Z.
Hasan
, and
Y. P.
Chen
,
Nat. Phys.
10
,
956
(
2014
).
6.
C.-Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.-L.
Wang
 et al,
Science
340
,
167
(
2013
).
7.
C.
Li
,
O.
vant Erve
,
J.
Robinson
,
Y.
Liu
,
L.
Li
, and
B.
Jonker
,
Nat. Nanotechnol.
9
,
218
(
2014
).
8.
Q. L.
He
,
L.
Pan
,
A. L.
Stern
,
E. C.
Burks
,
X.
Che
,
G.
Yin
,
J.
Wang
,
B.
Lian
,
Q.
Zhou
,
E. S.
Choi
,
K.
Murata
,
X.
Kou
,
Z.
Chen
,
T.
Nie
,
Q.
Shao
,
Y.
Fan
,
S.-C.
Zhang
,
K.
Liu
,
J.
Xia
, and
K. L.
Wang
,
Science
357
,
294
(
2017
).
9.
T.
Knispel
,
W.
Jolie
,
N.
Borgwardt
,
J.
Lux
,
Z.
Wang
,
Y.
Ando
,
A.
Rosch
,
T.
Michely
, and
M.
Grüninger
,
Phys. Rev. B
96
,
195135
(
2017
).
10.
T.
Bömerich
,
J.
Lux
,
Q. T.
Feng
, and
A.
Rosch
,
Phys. Rev. B
96
,
075204
(
2017
).
11.
W.
Ko
,
J.
Park
,
I.
Jeon
,
H. W.
Kim
,
H.
Kwon
,
Y.
Oh
,
J. S.
Kim
,
H.
Suh
,
S. W.
Hwang
, and
C.
Chung
,
Appl. Phys. Lett.
108
,
083109
(
2016
).
12.
A.
Banerjee
,
A.
Sundaresh
,
K.
Majhi
,
R.
Ganesan
, and
P. S. A.
Kumar
,
Appl. Phys. Lett.
109
,
232408
(
2016
).
13.
J.
Liao
,
Y.
Ou
,
H.
Liu
,
K.
He
,
X.
Ma
,
Q.-K.
Xue
, and
Y.
Li
,
Nat. Commun.
8
,
16071
(
2017
).
14.
Y.
Xu
,
J.
Chiu
,
L.
Miao
,
H.
He
,
Z.
Alpichshev
,
A.
Kapitulnik
,
R. R.
Biswas
, and
L. A.
Wray
,
Nat. Commun.
8
,
14081
(
2017
).
15.
J. J.
Cha
,
D.
Kong
,
S.-S.
Hong
,
J. G.
Analytis
,
K.
Lai
, and
Y.
Cui
,
Nano Lett.
12
,
1107
(
2012
).
16.
J.
Lee
,
J.
Park
,
J.-H.
Lee
,
J. S.
Kim
, and
H.-J.
Lee
,
Phys. Rev. B
86
,
245321
(
2012
).
17.
T.-C.
Hsiung
,
D.-Y.
Chen
,
L.
Zhao
,
Y.-H.
Lin
,
C.-Y.
Mou
,
T.-K.
Lee
,
M.-K.
Wu
, and
Y.-Y.
Chen
,
Appl. Phys. Lett.
103
,
163111
(
2013
).
18.
M.
Brahlek
,
N.
Koirala
,
M.
Salehi
,
N.
Bansal
, and
S.
Oh
,
Phys. Rev. Lett.
113
,
026801
(
2014
).
19.
A.
Banerjee
,
A.
Rai
,
K.
Majhi
,
S. R.
Barman
,
R.
Ganesan
, and
P. S. A.
Kumar
,
J. Phys. Condens. Matter
29
,
185001
(
2017
).
20.
A.
Banerjee
,
O.
Deb
,
K.
Majhi
,
R.
Ganesan
,
D.
Sen
, and
P. S. A.
Kumar
,
Nanoscale
9
,
6755
(
2017
).
21.
L.
Xue
,
P.
Zhou
,
C.
Zhang
,
C.
He
,
G.
Hao
,
L.
Sun
, and
J.
Zhong
,
AIP Adv.
3
,
052105
(
2013
).
22.
A.
Taskin
,
S.
Sasaki
,
K.
Segawa
, and
Y.
Ando
,
Phys. Rev. Lett.
109
,
066803
(
2012
).
23.
N.
Bansal
,
Y. S.
Kim
,
M.
Brahlek
,
E.
Edrey
, and
S.
Oh
,
Phys. Rev. Lett.
109
,
116804
(
2012
).
24.
J.
Chen
,
H.
Qin
,
F.
Yang
,
J.
Liu
,
T.
Guan
,
F.
Qu
,
G.
Zhang
,
J.
Shi
,
X.
Xie
,
C.
Yang
 et al,
Phys. Rev. Lett.
105
,
176602
(
2010
).
25.
J.
Checkelsky
,
Y.
Hor
,
R.
Cava
, and
N.
Ong
,
Phys. Rev. Lett.
106
,
196801
(
2011
).
26.
J.
Chen
,
X.
He
,
K.
Wu
,
Z.
Ji
,
L.
Lu
,
J.
Shi
,
J.
Smet
, and
Y.
Li
,
Phys. Rev. B
83
,
241304
(
2011
).
27.
H.
Steinberg
,
J.-B.
Laloë
,
V.
Fatemi
,
J. S.
Moodera
, and
P.
Jarillo-Herrero
,
Phys. Rev. B
84
,
233101
(
2011
).
28.
Y.
Jing
,
S.
Huang
,
K.
Zhang
,
J.
Wu
,
Y.
Guo
,
H.
Peng
,
Z.
Liu
, and
H.
Xu
,
Nanoscale
8
,
1879
(
2016
).
29.
B.
Xia
,
P.
Ren
,
A.
Sulaev
,
P.
Liu
,
S.-Q.
Shen
, and
L.
Wang
,
Phys. Rev. B
87
,
085442
(
2013
).
30.
S.
Hikami
,
A. I.
Larkin
, and
Y.
Nagaoka
,
Prog. Theor. Phys.
63
,
707
(
1980
).
31.
I.
Garate
and
L.
Glazman
,
Phys. Rev. B
86
,
035422
(
2012
).
32.
J.
Rammer
,
Quantum Field Theory of Non-Equilibrium States
(
Cambridge University Press
,
2007
).
33.
B.
Altshuler
and
A.
Aronov
,
Solid State Commun.
38
,
11
(
1981
).
34.
B. L.
Altshuler
,
A.
Aronov
, and
D.
Khmelnitsky
,
J. Phys. C: Solid State Phys.
15
,
7367
(
1982
).
35.
B. L.
Altshuler
and
A. G.
Aronov
,
Modern Problems in Condensed Matter Sciences
(
Elsevier
,
1985
), Vol.
10
, pp.
1
153
.
36.
P. A.
Lee
and
T. V.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
).
37.
A.
Kandala
,
A.
Richardella
,
D.
Zhang
,
T. C.
Flanagan
, and
N.
Samarth
,
Nano Lett.
13
,
2471
(
2013
).
38.
Y.
Takagaki
,
A.
Giussani
,
K.
Perumal
,
R.
Calarco
, and
K.-J.
Friedland
,
Phys. Rev. B
86
,
125137
(
2012
).
39.
B.
Altshuler
and
A.
Aronov
,
JETP Lett.
33
,
499
(
1981
).
40.
V.
Dugaev
and
D.
Khmelnitskii
,
Sov. Phys. JETP
59
,
1038
(
1984
).
41.
C. W. J.
Beenakker
and
H.
van Houten
,
Phys. Rev. B
38
,
3232
(
1988
).
42.
V. E.
Sacksteder
,
K. B.
Arnardottir
,
S.
Kettemann
, and
I. A.
Shelykh
,
Phys. Rev. B
90
,
235148
(
2014
).
43.
O.
Raichev
and
P.
Vasilopoulos
,
J. Phys. Condens. Matter
12
,
589
(
2000
).
44.
C.
Lin
,
X.
He
,
J.
Liao
,
X.
Wang
,
V.
Sacksteder
 IV
,
W.
Yang
,
T.
Guan
,
Q.
Zhang
,
L.
Gu
,
G.
Zhang
 et al,
Phys. Rev. B
88
,
041307
(
2013
).
45.
T.
Gramila
,
J.
Eisenstein
,
A.
MacDonald
,
L.
Pfeiffer
, and
K.
West
,
Phys. Rev. Lett.
66
,
1216
(
1991
).
46.
A.-P.
Jauho
and
H.
Smith
,
Phys. Rev. B
47
,
4420
(
1993
).
47.
L.
Zheng
and
A. H.
MacDonald
,
Phys. Rev. B
48
,
8203
(
1993
).
48.
A.
Price
,
A.
Savchenko
,
B.
Narozhny
,
G.
Allison
, and
D.
Ritchie
,
Science
316
,
99
(
2007
).
49.
R.
Gorbachev
,
A.
Geim
,
M.
Katsnelson
,
K.
Novoselov
,
T.
Tudorovskiy
,
I.
Grigorieva
,
A.
MacDonald
,
S.
Morozov
,
K.
Watanabe
,
T.
Taniguchi
 et al,
Nat. Phys.
8
,
896
(
2012
).
50.
J.
Li
,
R.-L.
Chu
,
J. K.
Jain
, and
S.-Q.
Shen
,
Phys. Rev. Lett.
102
,
136806
(
2009
).
51.
H.-M.
Guo
,
G.
Rosenberg
,
G.
Refael
, and
M.
Franz
,
Phys. Rev. Lett.
105
,
216601
(
2010
).
52.
A.
Agarwala
and
V. B.
Shenoy
,
Phys. Rev. Lett.
118
,
236402
(
2017
).
53.
R.
Du
,
H.-C.
Hsu
,
A. C.
Balram
,
Y.
Yin
,
S.
Dong
,
W.
Dai
,
W.
Zhao
,
D.
Kim
,
S.-Y.
Yu
,
J.
Wang
 et al,
Phys. Rev. B
93
,
195402
(
2016
).
54.
J.
Liao
,
Y.
Ou
,
X.
Feng
,
S.
Yang
,
C.
Lin
,
W.
Yang
,
K.
Wu
,
K.
He
,
X.
Ma
,
Q.-K.
Xue
, and
Y.
Li
,
Phys. Rev. Lett.
114
,
216601
(
2015
).

Supplementary Material

You do not currently have access to this content.