Colossal negative thermal expansion (NTE) recently discovered in layered ruthenate Ca2RuO4 is achieved by microstructural effects because of the crystal grains showing highly anisotropic thermal distortion and the pores in the sintered body. To improve the NTE properties, we have investigated element-substitution effects. We discovered that Sn doping expanded the operating-temperature window toward higher temperatures up to 700 K and improved the temperature linearity of NTE without decreasing the total volume change related to NTE. We discuss changes in NTE properties caused by Sn doping in terms of the electronic states and the structural transformation.

1.
J. S. O.
Evans
,
J. Chem. Soc., Dalton Trans.
1999
,
3317
.
2.
K.
Takenaka
,
Sci. Technol. Adv. Mater.
13
,
013001
(
2012
).
4.
J.
Chen
,
L.
Hu
,
J. X.
Deng
, and
X. R.
Xing
,
Chem. Soc. Rev.
44
,
3522
(
2015
).
5.
D. J.
Fisher
, “
Negative thermal expansion materials
,” (Materials Research Forum, LLC,
2018
).
6.
K.
Takenaka
,
M.
Ichigo
,
T.
Hamada
,
A.
Ozawa
,
T.
Shibayama
,
T.
Inagaki
, and
K.
Asano
,
Sci. Technol. Adv. Mater.
15
,
015009
(
2014
).
7.
M.
Azuma
,
K.
Oka
, and
K.
Nabetani
,
Sci. Technol. Adv. Mater.
16
,
034904
(
2015
).
8.
J.
Chen
,
X. R.
Xing
,
G. R.
Liu
,
J. H.
Li
, and
Y. T.
Liu
,
Appl. Phys. Lett.
89
,
101914
(
2006
).
9.
R. J.
Huang
,
Y. Y.
Liu
,
W.
Fan
,
J.
Tan
,
F. R.
Xiao
,
L. H.
Qian
, and
L. F.
Li
,
J. Am. Chem. Soc.
135
,
11469
(
2013
).
10.
C.
Wang
,
L. H.
Chu
,
Q. R.
Yao
,
Y.
Sun
,
M. M.
Wu
,
L.
Ding
,
J.
Yan
,
Y. Y.
Na
,
W. H.
Tang
,
G. N.
Li
,
Q. Z.
Huang
, and
J. W.
Lynn
,
Phys. Rev. B
85
,
220103(R)
(
2012
).
11.
Y. Y.
Zhao
,
F. X.
Hu
,
L. F.
Bao
,
J.
Wang
,
H.
Wu
,
Q. Z.
Huang
,
R. R.
Wu
,
Y.
Liu
,
F. R.
Shen
,
H.
Kuang
,
M.
Zhang
,
W. L.
Zuo
,
X. Q.
Zheng
,
J. R.
Sun
, and
B. G.
Shen
,
J. Am. Chem. Soc.
137
,
1746
(
2015
).
12.
H.
Yamamoto
,
T.
Imai
,
Y.
Sakai
, and
M.
Azuma
,
Angew. Chem., Int. Ed.
57
,
8170
(
2018
).
13.
M. G.
Tucker
,
A. L.
Goodwin
,
M. T.
Dove
,
D. A.
Keen
,
S. A.
Wells
, and
J. S. O.
Evans
,
Phys. Rev. Lett.
95
,
255501
(
2005
).
14.
K. W.
Chapman
,
P. J.
Chupas
, and
C. J.
Kepert
,
J. Am. Chem. Soc.
128
,
7009
(
2006
).
15.
16.
A.
Takezawa
,
M.
Kobashi
, and
M.
Kitamura
,
APL Mater.
3
,
076103
(
2015
).
17.
Q. M.
Wang
,
J. A.
Jackson
,
Q.
Ge
,
J. B.
Hopkins
,
C. M.
Spadaccini
, and
N. X.
Fang
,
Phys. Rev. Lett.
117
,
175901
(
2016
).
18.
K.
Takenaka
,
Y.
Okamoto
,
T.
Shinoda
,
N.
Katayama
, and
Y.
Sakai
,
Nat. Commun.
8
,
14102
(
2017
).
19.
K.
Takenaka
,
T.
Shinoda
,
N.
Inoue
,
Y.
Okamoto
,
N.
Katayama
,
Y.
Sakai
,
T.
Nishiubo
, and
M.
Azuma
,
Appl. Phys. Express
10
,
115501
(
2017
).
20.
A.
Takezawa
,
K.
Takenaka
, and
X. P.
Zhang
,
Appl. Phys. Express
11
,
055801
(
2018
).
21.
O.
Friedt
,
M.
Braden
,
G.
Andre
,
P.
Adelmann
,
S.
Nahatsuji
, and
Y.
Maeno
,
Phys. Rev. B
63
,
174432
(
2001
).
22.
T. F.
Qi
,
O. B.
Korneta
,
S.
Parkin
,
J. P.
Hu
, and
G.
Cao
,
Phys. Rev. B
85
,
165143
(
2012
).
23.
N.
Sharma
,
K. M.
Shaju
,
G. V.
S. Rao
, and
B. V. R.
Chowdari
,
J. Power Sources
139
,
250
(
2005
).
24.
F.
Izumi
and
T.
Ikeda
,
Mater. Sci. Forum
321-324
,
198
(
2000
).
25.
K.
Takenaka
and
M.
Ichigo
,
Compos. Sci. Technol.
104
,
47
(
2014
).
26.
K.
Nabetani
,
Y.
Muramatsu
,
K.
Oka
,
K.
Nakano
,
H.
Hojo
,
M.
Mizumaki
,
A.
Agui
,
Y.
Higo
,
N.
Hayashi
,
M.
Takano
, and
M.
Azuma
,
Appl. Phys. Lett.
106
,
061912
(
2015
).
27.
H.
Kino
,
T.
Fukushima
, and
T.
Tanaka
, in
Proceedings of 2017 IEEE 67th Electronic Components and Technology Conference
(
2017
), p.
1523
.

Supplementary Material

You do not currently have access to this content.