Digital coding metasurfaces have attracted attention due to their advantages compared to metamaterials. Many devices have been proposed by encoding the phase responses on metasurfaces such as orbit angular momentum generation, prefect absorbers, and holography. For complete manipulation for propagation of electromagnetic waves, it would be beneficial to control both phase and amplitude responses. Here, we propose a metasurface with independent control of phase and amplitude profiles, which is composed of four unit cells, and the amplitude responses of all unit cells range from 0.3 to 0.7. The four units have phase responses of 0, π/2, π, and 3π/2 separately to mimic the “00,” “01,” “10,” and “11” digital elements. The direction of the reflected beam from the metasurface can be manipulated by different sequences of digital elements, and meanwhile, the intensity of the reflected beam can be modulated through changing different amplitude responses in the same direction. We show that the distributions of both phase and amplitude responses of the metasurface will contribute to scattering reduction. We have used indium tin oxide to design the patterns of four units. The experiments and simulations confirm the physical phenomena mentioned above. The separate control of phase and amplitude responses suggests potential applications in high quality holography and mathematical operations of metasurfaces.

1.
V.
Veselago
and
E.
Narimanov
,
Nat. Mater.
5
,
759
(
2006
).
2.
3.
J. B.
Pendry
,
A. J.
Holden
,
W. J.
Stewart
, and
I.
Youngs
,
Phys. Rev. Lett.
76
,
4773
(
1996
).
4.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
,
2075
2084
(
1999
).
6.
R. A.
Shelby
,
D. R.
Smith
, and
S.
Schultz
,
Science
292
,
77
79
(
2001
).
7.
R.
Liu
,
Q.
Cheng
,
T.
Hand
,
J. J.
Mock
,
T. J.
Cui
,
S. A.
Cummer
, and
D. R.
Smith
,
Phys. Rev. Lett.
100
,
023903
(
2008
).
8.
N.
Seddon
and
T.
Bearpark
,
Science
302
,
1537
1540
(
2003
).
9.
T.
Ergin
,
N.
Stenger
,
P.
Brenner
,
J. B.
Pendry
, and
M.
Wegener
,
Science
328
,
337
339
(
2010
).
10.
R.
Liu
,
C.
Ji
,
J. J.
Mock
,
J. Y.
Chin
,
T. J.
Cui
, and
D. R.
Smith
,
Science
323
,
366
369
(
2009
).
11.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
,
977
980
(
2006
).
12.
X.
Huang
,
Y.
Lai
,
Z. H.
Hang
,
H.
Zheng
, and
C. T.
Chan
,
Nat. Mater.
10
,
582
(
2011
).
13.
H.
Shin
and
S.
Fan
,
Phys. Rev. Lett.
96
,
073907
(
2006
).
14.
J. B.
Pendry
,
Science
306
,
1353
1355
(
2004
).
15.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
,
Science
308
,
534
537
(
2005
).
16.
W. X.
Jiang
,
C. W.
Qiu
,
T. C.
Han
,
Q.
Cheng
,
H. F.
Ma
,
S.
Zhang
, and
T. J.
Cui
,
Adv. Mater.
25
,
6963
6968
(
2013
).
17.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J. P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
,
Science
334
,
333
337
(
2011
).
18.
C. L.
Holloway
,
E. F.
Kuester
,
J. A.
Gordon
,
J.
O'Hara
,
J.
Booth
, and
D. R.
Smith
,
IEEE Antennas Propag. Mag.
54
,
10
35
(
2012
).
19.
C.
Pfeiffer
and
A.
Grbic
,
Phys. Rev. Lett.
110
,
197401
(
2013
).
20.
M. Q.
Mehmood
,
S. T.
Mei
,
S.
Hussain
,
K.
Huang
,
S. Y.
Siew
,
L.
Zhang
,
T. H.
Zhang
,
X. H.
Ling
,
H.
Liu
,
J. H.
Teng
 et al,
Adv. Mater.
28
,
2533
2539
(
2016
).
21.
Q.
Ma
,
C. B.
Shi
,
G. D.
Bai
,
T. Y.
Chen
,
A.
Noor
, and
T. J.
Cui
,
Adv. Opt. Mater.
5
,
1700548
(
2017
).
22.
S.
Liu
,
H. B.
Chen
, and
T. J.
Cui
,
Appl. Phys. Lett.
106
,
151601
(
2015
).
23.
X.
Shen
,
T. J.
Cui
,
J.
Zhao
,
H. F.
Ma
,
W. X.
Jiang
, and
H.
Li
,
Opt. Express
19
,
9401
9407
(
2011
).
24.
L. L.
Li
,
T. J.
Cui
,
W.
Ji
,
S.
Liu
,
J.
Ding
,
X.
Wan
,
Y. B.
Li
,
M.
Jiang
,
C. W.
Qiu
, and
S.
Zhang
,
Nat. Commun.
8
,
197
(
2017
).
25.
F.
Yue
,
C.
Zhang
,
X. F.
Zang
,
D.
Wen
,
B. D.
Gerardot
,
S.
Zhang
, and
X. Z.
Chen
,
Light: Sci. Appl.
7
,
17129
(
2018
).
26.
D.
Lin
,
P. Y.
Fan
,
E.
Hasman
, and
M. L.
Brongersma
,
Science
345
,
298
302
(
2014
).
27.
T. J.
Cui
,
M. Q.
Qi
,
X.
Wan
,
J.
Zhao
, and
Q.
Cheng
,
Light: Sci. Appl.
3
,
e218
(
2014
).
29.
S.
Liu
,
T. J.
Cui
,
L.
Zhang
,
Q.
Xu
,
Q.
Wang
,
X.
Wan
,
J. Q.
Gu
,
W. X.
Tang
,
M. Q.
Qi
,
J. G.
Han
 et al,
Adv. Sci.
3
,
1600156
(
2016
).
30.
G. Y.
Lee
,
G.
Yoon
,
S. Y.
Lee
,
H.
Yun
,
J.
Cho
,
K.
Lee
,
H.
Kim
,
J.
Rho
, and
B.
Lee
,
Nanoscale
10
,
4237
4245
(
2018
).
31.
T.
Zhu
,
Y.
Zhou
,
Y.
Lou
,
H.
Ye
,
M.
Qiu
,
Z.
Ruan
, and
S.
Fan
,
Nat. Commun.
8
,
15391
(
2017
).
32.
L.
Liu
,
X.
Zhang
,
M.
Kenney
,
X.
Su
,
N.
Xu
,
C.
Ouyang
,
Y.
Shi
,
J.
Han
,
W.
Zhang
, and
S.
Zhang
,
Adv. Mater.
26
,
5031
5036
(
2014
).
33.
T. T.
Kim
,
H.
Kim
,
M.
Kenney
,
H. S.
Park
,
H. D.
Kim
,
B.
Min
, and
S.
Zhang
,
Adv. Opt. Mater.
6
,
1700507
(
2018
).
34.
H. H.
Yang
,
X. B.
Chen
,
F.
Yang
,
S. H.
Xu
,
X. Y.
Cao
,
M. K.
Li
, and
J.
Gao
,
IEEE Antennas Wireless Propag. Lett.
16
,
1159
1162
(
2017
).
35.
S.
Liu
and
T. J.
Cui
,
Adv. Opt. Mater.
5
,
1700624
(
2017
).
36.
D. S.
Dong
,
J.
Yang
,
Q.
Cheng
,
J.
Zhao
,
L. H.
Gao
,
S. J.
Ma
,
S.
Liu
,
H. B.
Chen
,
Q.
He
,
W. W.
Liu
 et al,
Adv. Opt. Mater.
3
,
1405
1410
(
2015
).
You do not currently have access to this content.