Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) enabled by an ultrathin, 5 nm, HfO2 film grown by atomic-layer deposition were fabricated. An ultra-low operation voltage of 1 V was achieved by a very high gate capacitance of 1300 nF/cm2. The HfO2 layer showed excellent surface morphology with a low root-mean-square roughness of 0.20 nm and reliable dielectric properties, such as low leakage current and high breakdown electric field. As such, the a-IGZO TFTs exhibit desirable properties such as low power devices, including a small subthreshold swing of 75 mV/decade, a low threshold voltage of 0.3 V, and a high on/off current ratio of 8 × 106. Furthermore, even under an ultralow operation voltage of 0.5 V, the on/off ratio was also up to 1 × 106. The electron transport through the HfO2 layer has also been analyzed, indicating the Poole-Frenkel emission and Fowler-Nordheim tunneling mechanisms in different voltage ranges.

1.
Y. S.
Rim
,
S.-H.
Bae
,
H.
Chen
,
N.
De Marco
, and
Y.
Yang
,
Adv. Mater.
28
,
4415
4440
(
2016
).
2.
C.-H.
Lu
,
T.-H.
Hou
, and
T.-M.
Pan
,
IEEE Trans. Electron Devices
63
,
5060
5063
(
2016
).
3.
J. I.
Leon
,
S.
Kouro
,
L. G.
Franquelo
,
J.
Rodriguez
, and
B.
Wu
,
IEEE Trans. Ind. Electron.
63
,
2688
2701
(
2016
).
4.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
492
(
2004
).
5.
B.
Zhang
,
H.
Li
,
X.
Zhang
,
Y.
Luo
,
Q.
Wang
, and
A.
Song
,
Appl. Phys. Lett.
106
,
093506
(
2015
).
6.
L.
Du
,
H.
Li
,
L.
Yan
,
J.
Zhang
,
Q.
Xin
,
Q.
Wang
, and
A.
Song
,
Appl. Phys. Lett.
110
,
011602
(
2017
).
7.
S.
Nakano
,
N.
Saito
,
K.
Miura
,
T.
Sakano
,
T.
Ueda
,
K.
Sugi
,
H.
Yamaguchi
,
I.
Amemiya
,
M.
Hiramatsu
, and
A.
Ishida
,
J. Soc. Inf. Disp.
20
,
493
498
(
2012
).
8.
J.-H.
Lee
,
D.-H.
Kim
,
D.-J.
Yang
,
S.-Y.
Hong
,
K.-S.
Yoon
,
P.-S.
Hong
,
C.-O.
Jeong
,
H.-S.
Park
,
S. Y.
Kim
,
S. K.
Lim
,
S. S.
Kim
,
K.-S.
Son
,
T.-S.
Kim
,
J.-Y.
Kwon
, and
S.-Y.
Lee
, in
SID Symposium Digest of Technical Papers
(
2008
), Vol. 39, pp.
625
628
.
9.
J. B.
Kim
,
C.
Fuentes-Hernandez
,
W. J.
Potscavage
,
X. H.
Zhang
, and
B.
Kippelen
,
Appl. Phys. Lett.
94
,
142107
(
2009
).
10.
C. H.
Wu
,
K. M.
Chang
,
S. H.
Huang
,
I. C.
Deng
,
C. J.
Wu
,
W. H.
Chiang
, and
C. C.
Chang
,
IEEE Electron Device Lett.
33
,
552
554
(
2012
).
11.
Y.
Shao
,
X.
Xiao
,
X.
He
,
W.
Deng
, and
S. D.
Zhang
,
IEEE Electron Device Lett.
36
,
573
575
(
2015
).
12.
C. J.
Chiu
,
S. P.
Chang
, and
S. J.
Chang
,
IEEE Electron Device Lett.
31
,
1245
1247
(
2010
).
13.
T.-M.
Pan
,
C.-H.
Chen
,
J.-H.
Liu
,
J.-L.
Her
, and
K.
Koyama
,
IEEE Electron Device Lett.
35
,
66
68
(
2014
).
14.
N. C.
Su
,
S. J.
Wang
, and
A.
Chin
,
IEEE Electron Device Lett.
30
,
1317
1319
(
2009
).
15.
S.
Nai-Chao
,
W.
Shui-Jinn
,
H.
Chin-Chuan
,
C.
Yu-Han
,
H.
Hao-Yuan
,
C.
Chen-Kuo
, and
A.
Chin
,
IEEE Electron Device Lett.
31
,
680
682
(
2010
).
16.
I. C.
Kun
,
H.
Hsiao-Hsuan
,
C.
Chun-Hu
,
L.
Kai-Yu
,
L.
Shang-Rong
, and
A.
Chin
, in
IEEE Conference on Electron Devices Solid-State Circuits
(
2013
), pp.
1
2
.
17.
C. H.
Cheng
,
K. I.
Chou
, and
H. H.
Hsu
,
J. Nanosci. Nanotechnol.
15
,
1486
1489
(
2015
).
18.
J.
Robertson
and
R. M.
Wallace
,
Mater. Sci. Eng. R
88
,
1
41
(
2015
).
19.
P.
Ma
,
L.
Du
,
Y.
Wang
,
R.
Jiang
,
Q.
Xin
,
Y.
Li
, and
A.
Song
,
Appl. Phys. Lett.
112
,
023501
(
2018
).
20.
Z.
Chun
,
C. Z.
Zhao
,
M.
Werner
,
S.
Taylor
, and
P. R.
Chalker
,
ISRN Nanotechnol.
2012
,
689023
.
21.
H.
Huey-liang
,
C. W.
Wang
,
K. H.
Chang
,
C. H.
Tsai
,
K. C.
Leou
,
C.-L.
Kuei-Shu
,
L.
Chun-Chang
,
S. C.
Chang
,
F. C.
Chiu
,
C. H.
Liu
,
A.
Chin
,
C.
Kow-Ming
, and
C.
Bwo-Ning
, in
IEEE International Conference on Electron Devices Solid-State Circuits
(
2008
), Vol.
7
, pp.
1
5
.
22.
C. B.
Oh
,
H. S.
Kang
,
H. J.
Ryu
,
M. H.
Oh
,
H. S.
Jung
,
Y. S.
Kim
,
J. H.
Lee
,
N. I.
Lee
,
K. H.
Cho
,
D. H.
Lee
,
T. H.
Yang
,
I. S.
Cho
,
H. K.
Kang
,
Y. W.
Kim
, and
K. P.
Suh
, in
Electron Devices Meeting IEDM
(
2002
), Vol.
423
, p.
426
.
23.
P. D.
Kirsch
,
J. H.
Sim
,
S. C.
Song
,
S.
Krishnan
,
J.
Peterson
,
H. J.
Li
,
M.
Quevedo-Lopez
,
C. D.
Young
,
R.
Choi
,
N.
Moumen
,
P.
Majhi
,
Q.
Wang
,
J. G.
Ekerdt
,
G.
Bersuker
, and
B. H.
Lee
, in
Proceedings of the European Solid-State Device Research Conference
(
2005
), pp.
367
370
.
24.
H. R.
Huff
,
A.
Hou
,
C.
Lim
,
Y.
Kim
,
J.
Barnett
,
G.
Bersuker
,
G. A.
Brown
,
C. D.
Young
,
P. M.
Zeitzoff
,
J.
Gutt
,
P.
Lysaght
,
M. I.
Gardner
, and
R. W.
Murto
,
Microelectron. Eng.
69
,
152
167
(
2003
).
25.
M. D.
Groner
,
J. W.
Elam
,
F. H.
Fabreguette
, and
S. M.
George
,
Thin Solid Films
413
,
186
197
(
2002
).
26.
A.
Daus
,
C.
Vogt
,
N.
Munzenrieder
,
L.
Petti
,
S.
Knobelspies
,
G.
Cantarella
,
M.
Luisier
,
G. A.
Salvatore
, and
G.
Troster
,
IEEE Trans. Electron Devices
64
,
2789
2796
(
2017
).
27.
R. Z.
Wang
,
S. L.
Wu
,
X. Y.
Li
, and
J. T.
Zhang
,
Solid-State Electron.
133
,
6
9
(
2017
).
28.
L.
Yuan
,
X.
Zou
,
G.
Fang
,
J.
Wan
,
H.
Zhou
, and
X.
Zhao
,
IEEE Electron Device Lett.
32
,
42
44
(
2011
).
29.
R.
Thamankar
,
F. M.
Puglisi
,
A.
Ranjan
,
N.
Raghavan
,
K.
Shubhakar
,
J.
Molina
,
L.
Larcher
,
A.
Padovani
,
P.
Pavan
,
S. J.
O'Shea
, and
K. L.
Pey
,
J. Appl. Phys.
122
,
024301
(
2017
).
30.
T.-L.
Shih
,
Y.-H.
Su
,
T.-C.
Kuo
,
W.-H.
Lee
, and
M. I.
Current
,
Appl. Phys. Lett.
111
,
012101
(
2017
).
31.
Y.
Takahashi
and
K.
Ohnishi
,
IEEE Trans. Electron Devices
40
,
2006
2010
(
1993
).
32.
M.
Lenzlinger
and
E. H.
Snow
,
J. Appl. Phys.
40
,
278
283
(
1969
).

Supplementary Material

You do not currently have access to this content.