This work reports growth of α-(AlxGa1-x)2O3 single crystals with high incorporation of Al by a Mist Chemical Vapor Deposition two-chamber system, which was rationally designed to avoid side-reactions between different precursors during solution preparation for multi-component thin film growth. Multiple acceleration voltages were used in Energy Dispersive X-ray measurements to reliably obtain the Al composition x of the films. As a result, Vegard's law for lattice constants was verified and found to be valid in the α-(AlxGa1-x)2O3 system. However, Vegard's law for optical bandgaps, derived from different models, required an additional term to account for the bowing effect. At x =0.71, the gaps were 7.74, 7.03, 7.26, and 7.34 eV as derived from the Tauc plots for the direct bandgap, indirect bandgap, Tauc-Lorentz model, and O'Leary-Johnson-Lim model, respectively. The two-chamber system provides reliable and effective control of the Al content in α-(AlxGa1-x)2O3 alloys and heterostructures.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
T.
Kawaharamura
,
G. T.
Dang
, and
M.
Furuta
,
Jpn. J. Appl. Phys.
51
,
040207
(
2012
).
3.
N.
Suzuki
,
S.
Ohira
,
M.
Tanaka
,
T.
Sugawara
,
K.
Nakajima
, and
T.
Shishido
,
Phys. Status Solidi C
4
,
2310
(
2007
).
4.
K.
Akaiwa
,
K.
Kaneko
,
K.
Ichino
, and
S.
Fujita
,
Jpn. J. Appl. Phys., Part 1
55
,
1202BA
(
2016
).
5.
T.
Oshima
,
K.
Matsuyama
,
K.
Yoshimatsu
, and
A.
Ohtomo
,
J. Cryst. Growth
421
,
23
(
2015
).
6.
G. T.
Dang
,
T.
Kawaharamura
,
M.
Furuta
, and
M. W.
Allen
,
IEEE Trans. Electron Devices
62
,
3640
(
2015
).
7.
M.
Oda
,
R.
Tokuda
,
H.
Kambara
,
T.
Tanikawa
,
T.
Sasaki
, and
T.
Hitora
,
Appl. Phys. Express
9
,
021101
(
2016
).
8.
S.
Müller
,
H.
von Wenckstern
,
F.
Schmidt
,
D.
Splith
,
F.-L.
Schein
,
H.
Frenzel
, and
M.
Grundmann
,
Appl. Phys. Express
8
,
121102
(
2015
).
9.
M.
Higashiwaki
,
K.
Konishi
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q. T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
,
B.
Monemar
,
A.
Koukitu
,
A.
Kuramata
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
108
,
133503
(
2016
).
10.
M. H.
Wong
,
Y.
Nakata
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Express
10
,
041101
(
2017
).
11.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
37
,
212
(
2016
).
12.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M. H.
Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
103
,
123511
(
2013
).
13.
S.
Krishnamoorthy
,
Z.
Xia
,
C.
Joishi
,
Y.
Zhang
,
J.
McGlone
,
J.
Johnson
,
M.
Brenner
,
A. R.
Arehart
,
J.
Hwang
,
S.
Lodha
, and
S.
Rajan
,
Appl. Phys. Lett.
111
(
2
),
023502
(
2017
).
14.
E.
Ahmadi
,
O. S.
Koksaldi
,
X.
Zheng
,
M.
Tom
,
Y.
Oshima
,
U. K.
Mishra
, and
J. S.
Speck
,
Appl. Phys. Express
10
,
071101
(
2017
).
15.
Y.
Zhang
,
A.
Neal
,
Z.
Xia
,
C.
Joishi
,
J. M.
Johnson
,
Y.
Zheng
,
S.
Bajaj
,
M.
Brenner
,
D.
Dorsey
,
K.
Chabak
,
G.
Jessen
,
J.
Hwang
,
S.
Mou
,
J. P.
Heremans
, and
S.
Rajan
,
Appl. Phys. Lett.
112
(
17
),
173502
(
2018
).
16.
T.
Mimura
,
S.
Hiyamizu
,
T.
Fujii
, and
K.
Nanbu
,
Jpn. J. Appl. Phys., Part 2
19
,
L225
(
1980
).
17.
G. T.
Dang
,
H.
Kanbe
, and
M.
Taniwaki
,
J. Appl. Phys.
106
,
093523
(
2009
).
18.
S. T.
Sheppard
,
K.
Doverspike
,
W. L.
Pribble
,
S. T.
Allen
,
J. W.
Palmour
,
L. T.
Kehias
, and
T. J.
Jenkins
,
IEEE Electron Device Lett.
20
,
161
(
1999
).
19.
H.
Ito
,
K.
Kaneko
, and
S.
Fujita
,
Jpn. J. Appl. Phys.
51
,
100207
(
2012
).
20.
S.
Fujita
and
K.
Kaneko
,
J. Cryst. Growth
401
,
588
(
2014
).
21.
K.
Kaneko
,
K.
Suzuki
,
Y.
Ito
, and
S.
Fujita
,
J. Cryst. Growth
436
,
150
(
2016
).
22.
R.
Jinno
,
T.
Uchida
,
K.
Kaneko
, and
S.
Fujita
,
Appl. Phys. Express
9
,
071101
(
2016
).
23.
S. W.
Kaun
,
F.
Wu
, and
J. S.
Speck
,
J. Vac. Sci. Technol. A
33
,
041508
(
2015
).
24.
Y.
Oshima
,
E.
Ahmadi
,
S. C.
Badescu
,
F.
Wu
, and
S. J.
Speck
,
Appl. Phys. Express
9
,
061102
(
2016
).
25.
C.
Kranert
,
M.
Jenderka
,
J.
Lenzner
,
M.
Lorenz
,
H.
von Wenckstern
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
J. Appl. Phys.
117
,
125703
(
2015
).
26.
R.
Schmidt-Grund
,
C.
Kranert
,
H. v
Wenckstern
,
V.
Zviagin
,
M.
Lorenz
, and
M.
Grundmann
,
J. Appl. Phys.
117
,
165307
(
2015
).
27.
T.
Oshima
,
Y.
Kato
,
M.
Oda
,
T.
Hitora
, and
M.
Kasu
,
Appl. Phys. Express
10
,
051104
(
2017
).
28.
T.
Oshima
,
Y.
Kato
,
N.
Kawano
,
A.
Kuramata
,
S.
Yamakoshi
,
S.
Fujita
,
T.
Oishi
, and
M.
Kasu
,
Appl. Phys. Express
10
,
035701
(
2017
).
29.
T.
Kawaharamura
,
Jpn. J. Appl. Phys., Part 1
53
(
5S1
),
05FF08
(
2014
).
30.
K.
Kaneko
,
T.
Nomura
,
I.
Kakeya
, and
S.
Fujita
,
Appl. Phys. Express
2
,
075501
(
2009
).
31.
N.
Suzuki
,
K.
Kaneko
, and
S.
Fujita
,
J. Cryst. Growth
401
,
670
(
2014
).
32.
T.
Kawaharamura
,
G. T.
Dang
, and
N.
Nitta
,
Appl. Phys. Lett.
109
,
151603
(
2016
).
33.
R.
Jinno
,
T.
Uchida
,
K.
Kaneko
, and
S.
Fujita
,
Phys. Status Solidi B
255
,
1700326
(
2018
).
34.
T.
Kawaharamura
,
P.
Rutthongjan
,
L.
Liu
,
M.
Nishi
,
M.
Sakamoto
,
Y.
Kobayashi
,
E. K. C.
Pradeep
,
G. T.
Dang
,
S.
Sato
,
S.
Yamaoki
,
Y.
Nakasone
, and
M.
Ueda
, in
Proceedings of the 78th JSAP Autumn Meeting
, Fukuoka, Japan, 5–8 September 2017 (JSAP, Fukuoka, Japan,
2017
), p. 7a.
35.
G. T.
Dang
,
T.
Kawaharamura
,
M.
Furuta
, and
M. W.
Allen
,
Appl. Phys. Lett.
110
,
073502
(
2017
).
36.
A.
Segura
,
L.
Artús
,
R.
Cuscó
,
R.
Goldhahn
, and
M.
Feneberg
,
Phys. Rev. Mater.
1
(
2
),
024604
(
2017
).
37.
G. E.
Jellison
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
).
38.
S. K.
O'Leary
,
S. R.
Johnson
, and
P. K.
Lim
,
J. Appl. Phys.
82
,
3334
(
1997
).

Supplementary Material

You do not currently have access to this content.