We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.

1.
A.
Allen
and
N.
Raghuvanshi
, “
Aerophones in flatland: Interactive wave simulation of wind instruments
,”
ACM Trans. Graphics (TOG)
34
(
4
),
134
(
2015
).
2.
M. A. B.
Andrade
,
T. S.
Ramos
,
F. T. A.
Okina
, and
J. C.
Adamowski
, “
Nonlinear characterization of a single-axis acoustic levitator
,”
Rev. Sci. Instrum.
85
(
4
),
045125
(
2014
).
3.
S.
Baer
,
M. A. B.
Andrade
,
C.
Esen
,
J. C.
Adamowski
, and
A.
Ostendorf
, “
Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations
,”
AIP Conf. Proc.
1433
,
35
38
(
2012
).
4.
M. V.
Berry
and
A. K.
Geim
, “
Of flying frogs and levitrons
,”
Eur. J. Phys.
18
(
4
),
307
(
1997
).
5.
E. H.
Brandt
, “
Acoustic physics: Suspended by sound
,”
Nature
413
(
6855
),
474
(
2001
).
6.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
(
6
),
1014
1021
(
2012
).
7.
A.
El Hajjaji
and
M.
Ouladsine
, “
Modeling and nonlinear control of magnetic levitation systems
,”
IEEE Trans. Ind. Electron.
48
(
4
),
831
838
(
2001
).
8.
D.
Foresti
,
M.
Nabavi
,
M.
Klingauf
,
A.
Ferrari
, and
D.
Poulikakos
, “
Acoustophoretic contactless transport and handling of matter in air
,”
Proc. Natl. Acad. Sci.
110
(
31
),
12549
12554
(
2013
).
9.
A. K.
Geim
,
M. D.
Simon
,
M. I.
Boamfa
, and
L. O.
Heflinger
, “
Magnet levitation at your fingertips
,”
Nature
400
(
6742
),
323
(
1999
).
10.
P.
Glynne-Jones
,
R. J.
Boltryk
,
N. R.
Harris
,
A. W. J.
Cranny
, and
M.
Hill
, “
Mode-switching: A new technique for electronically varying the agglomeration position in an acoustic particle manipulator
,”
Ultrasonics
50
(
1
),
68
75
(
2010
).
11.
R.
Habibi
,
C.
Devendran
, and
A.
Neild
, “
Trapping and patterning of large particles and cells in a 1d ultrasonic standing wave
,”
Lab Chip
17
(
19
),
3279
3290
(
2017
).
12.
L. V.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. London A
147
(
861
),
212
240
(
1934
).
13.
E. J.
Kramer
, “
Scaling laws for flux pinning in hard superconductors
,”
J. Appl. Phys.
44
(
3
),
1360
1370
(
1973
).
14.
A.
Marzo
,
A.
Barnes
, and
B. W.
Drinkwater
, “
Tinylev: A multi-emitter single-axis acoustic levitator
,”
Rev. Sci. Instrum.
88
(
8
),
085105
(
2017
).
15.
A.
Marzo
,
A.
Ghobrial
,
L.
Cox
,
M.
Caleap
,
A.
Croxford
, and
B. W.
Drinkwater
, “
Realization of compact tractor beams using acoustic delay-lines
,”
Appl. Phys. Lett.
110
(
1
),
014102
(
2017
).
16.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
17.
A.
Marzo
,
M.
Caleap
, and
B. W.
Drinkwater
, “
Acoustic virtual vortices with tunable orbital angular momentum for trapping of MIE particles
,”
Phys. Rev. Lett.
120
(
4
),
044301
(
2018
).
18.
N. A.
Mauro
and
K. F.
Kelton
, “
A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids
,”
Rev. Sci. Instrum.
82
(
3
),
035114
(
2011
).
19.
A. O.
Santillán
,
K.
Volke-Sepúlveda
, and
R. R.
Boullosa
,
Acoustically Controlled Rotations of a Disk in Free Field
(
International Institute of Acoustics and Vibration
,
2007
).
20.
T.
Schwarz
,
P.
Hahn
,
G.
Petit-Pierre
, and
J.
Dual
, “
Rotation of fibers and other non-spherical particles by the acoustic radiation torque
,”
Microfluid. Nanofluid.
18
(
1
),
65
79
(
2015
).
21.
H. J.
Sundvik
,
M.
Nieminen
,
A.
Salmi
,
P.
Panula
, and
E.
Hæggström
, “
Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos
,”
Sci. Rep.
5
,
13596
(
2015
).
22.
V.
Vandaele
,
A.
Delchambre
, and
P.
Lambert
, “
Acoustic wave levitation: Handling of components
,”
J. Appl. Phys.
109
(
12
),
124901
(
2011
).
23.
R. R.
Whymark
, “
Acoustic field positioning for containerless processing
,”
Ultrasonics
13
(
6
),
251
261
(
1975
).
24.
W. J.
Xie
,
C. D.
Cao
,
Y. J.
,
Z. Y.
Hong
, and
B.
Wei
, “
Acoustic method for levitation of small living animals
,”
Appl. Phys. Lett.
89
(
21
),
214102
(
2006
).
25.
Q.
Xiu-Pei
,
G.
De-Lu
,
H.
Zhen-Yu
, and
W.
Bing-Bo
, “
Rotation mechanism of ultrasonically levitated cylinders
,”
Acta Phys. Sin.
66
(
12
),
124301
(
2017
).
26.
A. L.
Yarin
,
G.
Brenn
,
J.
Keller
,
M.
Pfaffenlehner
,
E.
Ryssel
, and
C.
Tropea
, “
Flowfield characteristics of an aerodynamic acoustic levitator
,”
Phys. Fluids
9
(
11
),
3300
3314
(
1997
).

Supplementary Material

You do not currently have access to this content.