In recent years, the synthesis and study of individual single-crystal VO2 nanowires (NWs) have been attracting much interest due to the unique properties of the material related with the single-domain metal-insulator phase transition in such NWs. Although single-crystal VO2 NWs offer much promise for practical applications, the lack of a technology for forming NW arrays and, especially, ordered arrays of VO2 NWs still does not permit the mass fabrication of VO2-based devices and materials. Here, we break this barrier and synthesized ordered arrays of free-standing single-crystal monoclinic VO2 NWs. Vertically aligned, strongly periodic VO2 NWs were obtained in a chemical vapor deposition process used to grow VO2 on nanoimprinted Si substrate. Indicative of a high quality of obtained NW is a sharp rise of conductivity at the phase transition in VO2 reaching in magnitude four orders as well as a pronounced faceting of the crystals confirmed by x-ray diffraction measurements. Our approach paves the way toward a broad application of VO2 single crystals with desired sizes, shapes, and aspect ratios in various fields of nanophotonics and nanoelectronics, and in smart materials.

1.
N.
Davila
,
R.
Cabrera
, and
N.
Sepulveda
,
IEEE Photonics Technol. Lett.
24
(
20
),
1830
1833
(
2012
).
2.
M. R. M.
Hashemi
,
C. W.
Berry
,
E.
Merced
,
N.
Sepulveda
, and
M.
Jarrahi
,
J. Infrared, Millimeter, Terahertz Waves
35
(
5
),
486
492
(
2014
).
3.
A.
Rua
,
F. E.
Fernandez
, and
N.
Sepulveda
,
J. Appl. Phys.
107
(
7
),
074506
(
2010
).
4.
G.
Stefanovich
,
A.
Pergament
, and
D.
Stefanovich
,
J. Phys.: Condens. Matter
12
(
41
),
8837
8845
(
2000
).
5.
H. W.
Liu
,
J. P.
Lu
, and
X. R.
Wang
,
Nanotechnology
29
(
2
),
024002
(
2018
).
6.
Y. F.
Gao
,
H. J.
Luo
,
Z. T.
Zhang
,
L. T.
Kang
,
Z.
Chen
,
J.
Du
,
M.
Kanehira
, and
C. X.
Cao
,
Nano Energy
1
(
2
),
221
246
(
2012
).
7.
S. Y.
Li
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Thin Solid Films
520
(
10
),
3823
3828
(
2012
).
8.
E.
Strelcov
,
Y.
Lilach
, and
A.
Kolmakov
,
Nano Lett.
9
(
6
),
2322
2326
(
2009
).
9.
K.
Liu
,
C.
Cheng
,
Z. T.
Cheng
,
K. V.
Wang
,
R.
Ramesh
, and
J. Q.
Wu
,
Nano Lett.
12
(
12
),
6302
6308
(
2012
).
10.
A.
Tselev
,
J. D.
Budai
,
E.
Strelcov
,
J. Z.
Tischler
,
A.
Kolmakov
, and
S. V.
Kalinin
,
Nano Lett.
11
(
8
),
3065
3073
(
2011
).
11.
K.
Wang
,
C.
Cheng
,
E.
Cardona
,
J. Y.
Guan
,
K.
Liu
, and
J. Q.
Wu
,
ACS Nano
7
(
3
),
2266
2272
(
2013
).
12.
L. W.
Tutt
and
T. F.
Boggess
,
Prog. Quantum Electron.
17
(
4
),
299
338
(
1993
).
13.
M.
Rini
,
Z.
Hao
,
R. W.
Schoenlein
,
C.
Giannetti
,
F.
Parmigiani
,
S.
Fourmaux
,
J. C.
Kieffer
,
A.
Fujimori
,
M.
Onoda
,
S.
Wall
, and
A.
Cavalleri
,
Appl. Phys. Lett.
92
(
18
),
181904
(
2008
).
14.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
,
T. D.
Schladt
,
M. G.
Samant
, and
S. S. P.
Parkin
,
Science
339
(
6126
),
1402
1405
(
2013
).
15.
M.
Nakano
,
K.
Shibuya
,
D.
Okuyama
,
T.
Hatano
,
S.
Ono
,
M.
Kawasaki
,
Y.
Iwasa
, and
Y.
Tokura
,
Nature
487
(
7408
),
459
462
(
2012
).
16.
L. V.
Yakovkina
,
S. V.
Mutilin
,
V. Y.
Prinz
,
T. P.
Smirnova
,
V. R.
Shayapov
,
I. V.
Korol'kov
,
E. A.
Maksimovsky
, and
N. D.
Volchok
,
J. Mater. Sci.
52
(
7
),
4061
4069
(
2017
).
17.
D. N.
Zhang
,
T. L.
Wen
,
Y.
Xiong
,
D. H.
Qiu
, and
Q. Y.
Wen
,
Nano-Micro Lett.
9
(
3
),
9:29
(
2017
).
18.
H. F.
Zhu
,
L. H.
Du
,
J.
Li
,
Q. W.
Shi
,
B.
Peng
,
Z. R.
Li
,
W. X.
Huang
, and
L. G.
Zhu
,
Appl. Phys. Lett.
112
(
8
),
081103
(
2018
).
19.
R. M.
Bowman
and
J. M.
Gregg
,
J. Mater. Sci.: Mater. Electron.
9
(
3
),
187
191
(
1998
).
20.
C.
Ko
,
Z.
Yang
, and
S.
Ramanathan
,
ACS Appl. Mater. Interfaces
3
(
9
),
3396
3401
(
2011
).
21.
A.
Zimmers
,
L.
Aigouy
,
M.
Mortier
,
A.
Sharoni
,
S. M.
Wang
,
K. G.
West
,
J. G.
Ramirez
, and
I. K.
Schuller
,
Phys. Rev. Lett.
110
(
5
),
056601
(
2013
).
22.
Y. J.
Chang
,
J. S.
Yang
,
Y. S.
Kim
,
D. H.
Kim
,
T. W.
Noh
,
D. W.
Kim
,
E.
Oh
,
B.
Kahng
, and
J. S.
Chung
,
Phys. Rev. B
76
(
7
),
075118
(
2007
).
23.
M. M.
Qazilbash
,
M.
Brehm
,
B. G.
Chae
,
P. C.
Ho
,
G. O.
Andreev
,
B. J.
Kim
,
S. J.
Yun
,
A. V.
Balatsky
,
M. B.
Maple
,
F.
Keilmann
,
H. T.
Kim
, and
D. N.
Basov
,
Science
318
(
5857
),
1750
1753
(
2007
).
24.
M. M.
Qazilbash
,
A.
Tripathi
,
A. A.
Schafgans
,
B. J.
Kim
,
H. T.
Kim
,
Z. H.
Cai
,
M. V.
Holt
,
J. M.
Maser
,
F.
Keilmann
,
O. G.
Shpyrko
, and
D. N.
Basov
,
Phys. Rev. B
83
(
16
),
165108
(
2011
).
25.
D.
Stroud
,
Phys. Rev. B
12
(
8
),
3368
3373
(
1975
).
26.
B. S.
Mun
,
K.
Chen
,
J.
Yoon
,
C.
Dejoie
,
N.
Tamura
,
M.
Kunz
,
Z.
Liu
,
M. E.
Grass
,
S.-K.
Mo
,
C.
Park
,
Y. Y.
Lee
, and
H.
Ju
,
Phys. Rev. B
84
(
11
),
113109
(
2011
).
27.
R.
Shi
,
J. W.
Wang
,
X. B.
Cai
,
L. F.
Zhang
,
P. C.
Chen
,
S. Y.
Liu
,
L.
Zhang
,
W. K.
Ouyang
,
N.
Wang
, and
C.
Cheng
,
J. Phys. Chem. C
121
(
44
),
24877
24885
(
2017
).
28.
D.
Singh
and
B.
Viswanath
,
J. Mater. Sci.
52
(
10
),
5589
5599
(
2017
).
29.
B.
Fisher
and
L.
Patlagan
,
Materials
10
(
5
),
554
(
2017
).
30.
D.
Singh
and
B.
Viswanath
,
Scr. Mater.
141
,
24
27
(
2017
).
31.
P. D.
Yang
,
R. X.
Yan
, and
M.
Fardy
,
Nano Lett.
10
(
5
),
1529
1536
(
2010
).
32.
G.
Koblmuller
and
G.
Abstreiter
,
Phys. Status Solidi RRL
8
(
1
),
11
30
(
2014
).
33.
G. N.
Malheiros-Silveira
,
F. L.
Lu
,
I.
Bhattacharya
,
T. T. D.
Tran
,
H.
Sun
, and
C. J.
Chang-Hasnain
,
ACS Photonics
4
(
5
),
1021
1025
(
2017
).
34.
Y. C.
Arango
,
L. B.
Huang
,
C. Y.
Chen
,
J.
Avila
,
M. C.
Asensio
,
D.
Grutzmacher
,
H.
Luth
,
J. G.
Lu
, and
T.
Schapers
,
Sci. Rep.
6
,
29493
(
2016
).
35.
M.
Beck
and
B.
Heidari
,
OnBoard Technol.
2006
,
52
55
, http://www.onboard-technology.com/pdf_settembre2006/090609.pdf.
36.
R. N.
Nenashev
,
N. E.
Mordvinova
,
V. P.
Zlomanov
, and
V. L.
Kuznetsov
,
Inorg. Mater.
51
(
9
),
891
896
(
2015
).
37.
V. G.
Dubrovskii
,
G. E.
Cirlin
, and
V. M.
Ustinov
,
Semiconductors
43
(
12
),
1539
1584
(
2009
).
38.
B. S.
Guiton
,
Q.
Gu
,
A. L.
Prieto
,
M. S.
Gudiksen
, and
H.
Park
,
J. Am. Chem. Soc.
127
(
2
),
498
499
(
2005
).
39.
J. F.
Tian
,
F.
Liu
,
C. M.
Shen
,
H. R.
Zhang
,
T. Z.
Yang
,
L. H.
Bao
,
X. J.
Wang
,
D. T.
Liu
,
H.
Li
,
X. J.
Huang
,
J. Q.
Li
,
L. Q.
Chen
, and
H. J.
Gao
,
J. Mater. Res.
22
(
7
),
1921
1926
(
2007
).
40.
E.
Strelcov
,
A. V.
Davydov
,
U.
Lanke
,
C.
Watts
, and
A.
Kolmakov
,
ACS Nano
5
(
4
),
3373
3384
(
2011
).
41.
U.
Salazar-Kuri
,
E. E.
Antunez
,
J. O.
Estevez
,
S. F.
Olive-Mendez
,
N. R.
Silva-Gonzalez
, and
V.
Agarwal
,
J. Phys. Chem. Solids
104
,
21
31
(
2017
).
42.
J. I.
Sohn
,
H. J.
Joo
,
A. E.
Porter
,
C. J.
Choi
,
K.
Kim
,
D. J.
Kang
, and
M. E.
Welland
,
Nano Lett.
7
(
6
),
1570
1574
(
2007
).
43.
Search Match software and the Powder Diffraction Files, International Centre for Diffraction Data, Pennsylvania, USA,
2010
.
44.
S. Y.
Li
,
K.
Namura
,
M.
Suzuki
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
J. Appl. Phys.
114
(
23
),
239902
(
2013
).
45.
L. Q.
Mai
,
Y. H.
Gu
,
C. H.
Han
,
B.
Hu
,
W.
Chen
,
P. C.
Zhang
,
L.
Xu
,
W. L.
Guo
, and
Y.
Dai
,
Nano Lett.
9
(
2
),
826
830
(
2009
).
46.
C.
Cheng
,
H.
Guo
,
A.
Amini
,
K.
Liu
,
D.
Fu
,
J.
Zou
, and
H. S.
Song
,
Sci. Rep.
4
,
5456
(
2014
).
47.
C.
Cheng
,
K.
Liu
,
B.
Xiang
,
J.
Suh
, and
J. Q.
Wu
,
Appl. Phys. Lett.
100
(
10
),
10311
(
2012
).
48.
J. P.
Lu
,
H. W.
Liu
,
S. Z.
Deng
,
M. R.
Zheng
,
Y. H.
Wang
,
J. A.
van Kan
,
S. H.
Tang
,
X. H.
Zhang
,
C. H.
Sow
, and
S. G.
Mhaisalkar
,
Nanoscale
6
(
13
),
7619
7627
(
2014
).
49.
J. H.
Son
,
J.
Wei
,
D.
Cobden
,
G. Z.
Cao
, and
Y. N.
Xia
,
Chem. Mater.
22
(
10
),
3043
3050
(
2010
).
50.
J.
Maeng
,
T. W.
Kim
,
G.
Jo
, and
T.
Lee
,
Mater. Res. Bull.
43
(
7
),
1649
1656
(
2008
).
51.
H. H.
Yin
,
M.
Luo
,
K.
Yu
,
Y. F.
Gao
,
R.
Huang
,
Z. L.
Zhang
,
M.
Zeng
,
C. X.
Cao
, and
Z. Q.
Zhu
,
ACS Appl. Mater. Interfaces
3
(
6
),
2057
2062
(
2011
).
52.
G. A.
Horrocks
,
S.
Singh
,
M. F.
Likely
,
G.
Sambandamurthy
, and
S.
Banerjee
,
ACS Appl. Mater. Interfaces
6
(
18
),
15726
15732
(
2014
).
53.
F. J.
Morin
,
Phys. Rev. Lett.
3
(
1
),
34
36
(
1959
).
54.
V. Y.
Prinz
,
Physica E
24
(
1-2
),
54
62
(
2004
).
55.
M. M.
Fadlelmula
,
E. C.
Surmeli
,
M.
Ramezani
, and
T. S.
Kasirga
,
Nano Lett.
17
(
3
),
1762
1767
(
2017
).
You do not currently have access to this content.