The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves, together with the many applications of magnetic nanoparticles—whether individual or in arrays—underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are difficult to produce by other methods yet offer many advantages over suspensions of individual nanoparticles by making use of the scale of the structures formed, 10−9 to 10−5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For loosely connected 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change to interconnected loops of ∼10–100 particles. Increasing the acoustic field intensity drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. The self-evident morphology transitions depend solely upon the relative amplitudes of the Brownian, Bjerknes, and magnetic forces.

1.
G. M.
Whitesides
and
B.
Grzybowski
, “
Self-assembly at all scales
,”
Science
295
,
2418
2421
(
2002
).
2.
L.
Jiang
,
X.
Chen
,
N.
Lu
, and
L.
Chi
, “
Spatially confined assembly of nanoparticles
,”
Acc. Chem. Res.
47
,
3009
3017
(
2014
).
3.
E.
Braun
,
Y.
Eichen
,
U.
Sivan
, and
G.
Ben-Yoseph
, “
DNA-templated assembly and electrode attachment of a conducting silver wire
,”
Nature
391
,
775
778
(
1998
).
4.
K.
Takazawa
,
Y.
Kitahama
,
Y.
Kimura
, and
G.
Kido
, “
Optical waveguide self-assembled from organic dye molecules in solution
,”
Nano Lett.
5
,
1293
1296
(
2005
).
5.
X.
Li
,
L. E.
Sinks
,
B.
Rybtchinski
, and
M. R.
Wasielewski
, “
Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine tetrakis (perylenediimide)
,”
J. Am. Chem. Soc.
126
,
10810
10811
(
2004
).
6.
N.
Chaki
and
K.
Vijayamohanan
, “
Self-assembled monolayers as a tunable platform for biosensor applications
,”
Biosens. Bioelectron.
17
,
1
12
(
2002
).
7.
M.
Liong
,
J.
Lu
,
M.
Kovochich
,
T.
Xia
,
S. G.
Ruehm
,
N.
Andre
,
E. F.
Tamanoi
, and
J. I.
Zink
, “
Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery
,”
ACS Nano
2
,
889
(
2008
).
8.
A.
Edrington
,
A.
Urbas
,
P.
DeRege
,
C.
Chen
,
T.
Swager
,
N.
Hadjichristidis
,
M.
Xenidou
,
L.
Fetters
,
J.
Joannopoulos
, and
Y.
Fink
, “
Polymer-based photonic crystals
,”
Adv. Mater.
13
,
421
425
(
2001
).
9.
Y.
Sahoo
,
M.
Cheon
,
S.
Wang
,
H.
Luo
,
E.
Furlani
, and
P.
Prasad
, “
Field-directed self-assembly of magnetic nanoparticles
,”
J. Phys. Chem. B
108
,
3380
3383
(
2004
).
10.
S.
Soeya
,
J.
Hayakawa
,
H.
Takahashi
,
K.
Ito
,
C.
Yamamoto
,
A.
Kida
,
H.
Asano
, and
M.
Matsui
, “
Development of half-metallic ultrathin fe3o4 films for spin-transport devices
,”
Appl. Phys. Lett.
80
,
823
825
(
2002
).
11.
D.
Coey
,
A.
Berkowitz
,
L.
Balcells
,
F.
Putris
, and
A.
Barry
, “
Magnetoresistance of chromium dioxide powder compacts
,”
Phys. Rev. Lett.
80
,
3815
(
1998
).
12.
S.
Sun
and
H.
Zeng
, “
Size-controlled synthesis of magnetite nanoparticles
,”
J. Am. Chem. Soc.
124
,
8204
8205
(
2002
).
13.
M.
Tanase
,
D.
Silevitch
,
A.
Hultgren
,
L.
Bauer
,
P.
Searson
,
G.
Meyer
, and
D.
Reich
, “
Magnetic trapping and self-assembly of multicomponent nanowires
,”
J. Appl. Phys.
91
,
8549
8551
(
2002
).
14.
J.
Wang
,
Q.
Chen
,
C.
Zeng
, and
B.
Hou
, “
Magnetic-field-induced growth of single-crystalline fe3o4 nanowires
,”
Adv. Mater.
16
,
137
140
(
2004
).
15.
M.
Wu
,
Y.
Xiong
,
Y.
Jia
,
H.
Niu
,
H.
Qi
,
J.
Ye
, and
Q.
Chen
, “
Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite
,”
Chem. Phys. Lett.
401
,
374
379
(
2005
).
16.
D.
Choi
,
S.
Jang
,
H.
Yu
, and
S.
Yang
, “
Two-dimensional polymer nanopattern by using particle-assisted soft lithography
,”
Chem. Mater.
16
,
3410
3413
(
2004
).
17.
S.
Shoji
and
S.
Kawata
, “
Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin
,”
Appl. Phys. Lett.
76
,
2668
2670
(
2000
).
18.
S.
Xuan
,
F.
Wang
,
J. M. Y.
Lai
,
K. W. Y.
Sham
,
Y.-X. J.
Wang
,
S.-F.
Lee
,
J. C.
Yu
,
C. H. K.
Cheng
, and
K. C.-F.
Leung
, “
Synthesis of biocompatible, mesoporous fe3o4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications
,”
ACS Appl. Mater. Interfaces
3
,
237
244
(
2011
).
19.
S.
Zhang
,
M.
Regulacio
, and
M.
Han
, “
Self-assembly of colloidal one-dimensional nanocrystals
,”
Chem. Soc. Rev.
43
,
2301
2323
(
2014
).
20.
S.
Sun
,
S.
Anders
,
H. F.
Hamann
,
J.-U.
Thiele
,
J.
Baglin
,
T.
Thomson
,
E. E.
Fullerton
,
C.
Murray
, and
B. D.
Terris
, “
Polymer mediated self-assembly of magnetic nanoparticles
,”
J. Am. Chem. Soc.
124
,
2884
2885
(
2002
).
21.
H.
Niu
,
Q.
Chen
,
H.
Zhu
,
Y.
Lin
, and
X.
Zhang
, “
Magnetic field-induced growth and self-assembly of cobalt nanocrystallites
,”
J. Mater. Chem.
13
,
1803
1805
(
2003
).
22.
R.
White
and
F.
Voltmer
, “
Direct piezoelectric coupling to surface elastic waves
,”
Appl. Phys. Lett.
7
,
314
316
(
1965
).
23.
J.
Friend
and
L.
Yeo
, “
Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics
,”
Rev. Mod. Phys.
83
,
647
(
2011
).
24.
S.
Levine
,
B. D.
Bowen
, and
S. J.
Partridge
, “
Stabilization of emulsions by fine particles i. partitioning of particles between continuous phase and oil/water interface
,”
Colloids Surf.
38
,
325
343
(
1989
).
25.
C.
Bradley
, “
Acoustic streaming field structure: The influence of the radiator
,”
J. Acoust. Soc. Am.
100
,
1399
1408
(
1996
).
26.
R.
Shilton
,
M.
Tan
,
L.
Yeo
, and
J. R.
Friend
, “
Particle concentration and mixing in microdrops driven by focused surface acoustic waves
,”
J. Appl. Phys.
104
,
014910
(
2008
).
27.
R.
Erb
,
H.
Son
,
B.
Samanta
,
V.
Rotello
, and
B.
Yellen
, “
Magnetic assembly of colloidal superstructures with multipole symmetry
,”
Nature
457
,
999
1002
(
2009
).
28.
A.
Reenen
,
A.
Jong
, and
M.
Prins
, “
Transportation, dispersion and ordering of dense colloidal assemblies by magnetic interfacial rotaphoresis
,”
Lab Chip
15
,
2864
2871
(
2015
).
29.
K.
Butter
,
P.
Bomans
,
P.
Frederik
,
G.
Vroege
, and
A.
Philipse
, “
Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy
,”
Nat. Mater.
2
,
88
91
(
2003
).
30.
S.
Singamaneni
,
V. N.
Bliznyuk
,
C.
Binek
, and
E. Y.
Tsymbal
, “
Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications
,”
J. Mater. Chem.
21
,
16819
16845
(
2011
).
31.
S.
Biswal
and
A.
Gast
, “
Rotational dynamics of semiflexible paramagnetic particle chains
,”
Phys. Rev. E
69
,
041406
(
2004
).
32.
J.
Armstrong
,
R.
Wenby
,
H.
Meiselman
, and
T.
Fisher
, “
The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation
,”
Biophys. J.
87
,
4259
4270
(
2004
).
33.
J.
Li
,
Q.
Du
, and
C.
Sun
, “
An improved box-counting method for image fractal dimension estimation
,”
Pattern Recognit.
42
,
2460
2469
(
2009
).
34.
M. K.
Tan
,
J. R.
Friend
, and
L.
Yeo
, “
Microparticle collection and concentration via a miniature surface acoustic wave device
,”
Lab Chip
7
,
618
625
(
2007
).
35.
M.
Hejazian
,
W.
Li
, and
N.
Nguyen
, “
Lab on a chip for continuous-flow magnetic cell separation
,”
Lab Chip
15
,
959
970
(
2015
).
36.
A.
Mehdizadeh
,
R.
Mei
,
J. F.
Klausner
, and
N.
Rahmatian
, “
Interaction forces between soft magnetic particles in uniform and non-uniform magnetic fields
,”
Acta Mech. Sin.
26
,
921
929
(
2010
).
37.
M.
Kim
and
Z.
andrew
, “
Effect of electrostatic, hydrodynamic and brownian forces on particle trajectories and sieving in normal flow filtration
,”
J. Colloid Interface Sci.
269
,
425
431
(
2004
).
38.
K.
Berland
,
V.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B.
Lundqvist
, “
van der Waals forces in density functional theory: A review of the vdW-DF method
,”
Rep. Prog. Phys.
78
,
066501
(
2015
).
39.
P.
Kralchevsky
and
K.
Nagayama
, “
Capillary forces between colloidal particles
,”
Langmuir
10
,
23
36
(
1994
).
40.
F.
Nadal
and
E.
Lauga
, “
Small acoustically forced symmetric bodies in viscous fluids
,”
J. Acoust. Soc. Am.
139
,
1081
1092
(
2016
).
41.
M.
Miansari
,
A.
Qi
,
L.
Yeo
, and
J. R.
Friend
, “
Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air
,”
Adv. Funct. Mater.
25
,
1014
1023
(
2015
).
42.
T.
Laurell
,
F.
Petersson
, and
N.
andreas
, “
Chip integrated strategies for acoustic separation and manipulation of cells and particles
,”
Chem. Soc. Rev.
36
,
492
506
(
2007
).
43.
J. N.
Israelachvili
,
Intermolecular and Surface Forces: Revised Third Edition
(
Academic Press
,
2011
).
44.
B.
Faure
,
G.
Salazar-Alvarez
, and
L.
Bergström
, “
Hamaker constants of iron oxide nanoparticles
,”
Langmuir
27
,
8659
8664
(
2011
).
45.
H. C.
Hamaker
, “
The London—van der Waals attraction between spherical particles
,”
Physica
4
,
1058
1072
(
1937
).
46.
H.
Shinto
,
D.
Komiyama
, and
K.
Higashitani
, “
Lateral capillary forces between solid bodies on liquid surface: A lattice Boltzmann study
,”
Langmuir
22
,
2058
2064
(
2006
).
47.
P. A.
Kralchevsky
and
N. D.
Denkov
, “
Capillary forces and structuring in layers of colloid particles
,”
Curr. Opin. Colloid Interface Sci.
6
,
383
401
(
2001
).
48.
C.
Balanis
,
Advanced Engineering Electromagnetics
(
John Wiley & Sons
,
2012
).
49.
D.
Reeves
and
J.
Weaver
, “
Simulations of magnetic nanoparticle Brownian motion
,”
J. Appl. Phys.
112
,
124311
(
2012
).
50.
Y.
Min
,
M.
Akbulut
,
K.
Kristiansen
,
Y.
Golan
, and
J.
Israelachvili
, “
The role of interparticle and external forces in nanoparticle assembly
,”
Nat. Mater.
7
,
527
538
(
2008
).

Supplementary Material

You do not currently have access to this content.