The topologically protected, chiral soliton lattice is a unique state of matter offering intriguing functionality, and it may serve as a robust platform for storing and transporting information in future spintronic devices. While the monoaxial chiral magnet Cr1∕3NbS2 is known to host this exotic state in an applied magnetic field, its detailed microscopic origin has remained a matter of debate. Here, we work towards addressing this open question by measuring the spin wave spectrum of Cr1∕3NbS2 over the entire Brillouin zone with inelastic neutron scattering. The well-defined spin wave modes allow us to determine the values of several microscopic interactions for this system. The experimental data are well-explained by a Heisenberg Hamiltonian with exchange constants up to the third nearest neighbor and an easy plane magnetocrystalline anisotropy term. Our work shows that both the second and third nearest neighbor exchange interactions contribute to the formation of the helimagnetic and chiral soliton lattice states in this robust three-dimensional magnet.

1.
G. H.
Wagniere
,
On Chirality and the Universal Asymmetry
(
Wiley-VCH
,
Weinheim
,
2007
).
2.
A.
Bogdanov
and
A.
Hubert
,
J. Magn. Magn. Mater.
138
,
255
(
1994
).
3.
S.
Muhlbauer
,
B.
Binz
,
F.
Jonietz
,
C.
Pfleiderer
,
A.
Rosch
,
A.
Neubauer
,
R.
Georgii
, and
P.
Boni
,
Science
323
,
915
(
2009
).
4.
W.
Munzer
,
A.
Neubauer
,
T.
Adams
,
S.
Muhlbauer
,
C.
Franz
,
F.
Jonietz
,
R.
Georgii
,
P.
Boni
,
B.
Pedersen
,
M.
Schmidt
 et al,
Phys. Rev. B
81
,
041203(R)
(
2010
).
5.
X. Z.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J. H.
Park
,
J. H.
Han
,
Y.
Matsui
,
N.
Nagaosa
, and
Y.
Tokura
,
Nature
465
,
901
(
2010
).
6.
X. Z.
Yu
,
N.
Kanazawa
,
Y.
Onose
,
K.
Kimoto
,
W. Z.
Zhang
,
S.
Ishiwata
,
Y.
Matsui
, and
Y.
Tokura
,
Nat. Mater.
10
,
106
(
2011
).
7.
W.
Kang
,
Y.
Huang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
,
Proc. IEEE
104
,
2040
(
2016
).
8.
N.
Nagaosa
and
Y.
Tokura
,
Nat. Nanotechnol.
8
,
899
(
2013
).
9.
F.
Jonietz
,
S.
Muhlbauer
,
C.
Pfleiderer
,
A.
Neubauer
,
W.
Munzer
,
A.
Bauer
,
T.
Adams
,
R.
Georgii
,
P.
Boni
,
R. A.
Duine
 et al,
Science
330
,
1648
(
2010
).
10.
A.
Bauer
and
C.
Pfleiderer
,
Phys. Rev. B
85
,
214418
(
2012
).
11.
A. B.
Butenko
,
A. A.
Leonov
,
U. K.
Robler
, and
A. N.
Bogdanov
,
Phys. Rev. B
82
,
052403
(
2010
).
12.
E. A.
Karhu
,
U. K.
Robler
,
A. N.
Bogdanov
,
S.
Kahwaji
,
B. J.
Kirby
,
H.
Fritzsche
,
M. D.
Robertson
,
C. F.
Majkrzak
, and
T. L.
Monchesky
,
Phys. Rev. B
85
,
094429
(
2012
).
13.
M.
Vousden
,
M.
Albert
,
M.
Beg
,
M.-A.
Bisotti
,
R.
Carey
,
D.
Chernyshenko
,
D.
Cortes-Ortuno
,
W.
Wang
,
O.
Hovorka
,
C. H.
Marrows
 et al,
Appl. Phys. Lett.
108
,
132406
(
2016
).
14.
Y.
Togawa
,
T.
Koyama
,
K.
Takayanagi
,
S.
Mori
,
Y.
Kousaka
,
J.
Akimitsu
,
S.
Nishihara
,
K.
Inoue
,
A. S.
Ovchinnikov
, and
J.
Kishine
,
Phys. Rev. Lett.
108
,
107202
(
2012
).
15.
A. B.
Borisov
,
J.
Kishine
,
I. G.
Bostrem
, and
A. S.
Ovchinnikov
,
Phys. Rev. B
79
,
134436
(
2009
).
16.
J.
Kishine
,
A. S.
Ovchinnikov
, and
I. V.
Proskurin
,
Phys. Rev. B
82
,
064407
(
2010
).
17.
T.-H.
Kim
,
S.
Cheon
, and
H. W.
Yeom
,
Nat. Phys.
13
,
444
(
2017
).
18.
J.
Kishine
,
K.
Inoue
, and
K.
Kikuchi
,
J. Magn. Magn. Mater.
310
,
1386
(
2007
).
19.
M.
Shinozaki
,
S.
Hoshino
,
Y.
Masaki
,
J.
Kishine
, and
Y.
Kato
,
J. Phys. Soc. Jpn.
85
,
074710
(
2016
).
20.
Y.
Kousaka
,
Y.
Nakao
,
J.
Kishine
,
M.
Akita
,
K.
Inoue
, and
J.
Akimitsu
,
Nucl. Instrum. Methods Phys. Res., Sect. A
600
,
250
(
2009
).
21.
J.
Kishine
and
A. S.
Ovchinnikov
,
Phys. Rev. B
79
,
220405(R)
(
2009
).
22.
B. J.
Chapman
,
A. C.
Bornstein
,
N. J.
Ghimire
,
D.
Mandrus
, and
M.
Lee
,
Appl. Phys. Lett.
105
,
072405
(
2014
).
23.
D.
Yoshizawa
,
J.
Kishine
,
Y.
Kousaka
,
Y.
Togawa
,
M.
Mito
,
J.
Akimitsu
,
K.
Inoue
, and
M.
Hagiwara
,
Phys. Procedia
75
,
926
(
2015
).
24.
S.
Mankovsky
,
S.
Polesya
,
H.
Ebert
, and
W.
Bensch
,
Phys. Rev. B
94
,
184430
(
2016
).
25.
S. S. P.
Parkin
and
R. H.
Friend
,
Philos. Mag. B
41
,
65
(
1980
).
26.
D. M.
Fobes
,
Y.
Luo
,
N.
Leon-Brito
,
E. D.
Bauer
,
V. R.
Fanelli
,
M. A.
Taylor
,
L. M.
DeBeer-Schmitt
, and
M.
Janoschek
,
Appl. Phys. Lett.
110
,
192409
(
2017
).
27.
N. J.
Ghimire
,
M. A.
McGuire
,
D. S.
Parker
,
B.
Sipos
,
S.
Tang
,
J.-Q.
Yan
,
B. C.
Sales
, and
D.
Mandrus
,
Phys. Rev. B
87
,
104403
(
2013
).
28.
T.
Miyadai
,
K.
Kikuchi
,
H.
Kondo
,
S.
Sakka
,
M.
Arai
, and
Y.
Ishikawa
,
J. Phys. Soc. Jpn.
52
,
1394
(
1983
).
29.
V.
Dyadkin
,
F.
Mushenok
,
A.
Bosak
,
D.
Menzel
,
S.
Grigoriev
,
P.
Pattison
, and
D.
Chernyshov
,
Phys. Rev. B
91
,
184205
(
2015
).
30.
T. J.
Sato
,
D.
Okuyama
,
T.
Hong
,
A.
Kikkawa
,
Y.
Taguchi
,
T.
Arima
, and
Y.
Tokura
,
Phys. Rev. B
94
,
144420
(
2016
).
31.
M.
Janoschek
,
F.
Bernlochner
,
S.
Dunsiger
,
C.
Pfleiderer
,
P.
Boni
,
B.
Roessli
,
P.
Link
, and
A.
Rosch
,
Phys. Rev. B
81
,
214436
(
2010
).
32.
S.
Toth
and
B.
Lake
,
J. Phys.: Condens. Matter
27
,
166002
(
2015
).
33.
J.
Kennedy
and
R.
Eberhart
, in
IEEE International Conference on Neural Networks Proceedings
(
1995
), Vol. 1–6, p.
1942
.
34.
W. C.
Koehler
,
H. R.
Child
,
R. M.
Nicklow
,
H. G.
Smith
,
R. M.
Moon
, and
J. W.
Cable
,
Phys. Rev. Lett.
24
,
16
(
1970
).
35.
T. J.
Williams
,
A. E.
Taylor
,
A. D.
Christianson
,
S. E.
Hahn
,
R. S.
Fishman
,
D. S.
Parker
,
M. A.
McGuire
,
B. C.
Sales
, and
M. D.
Lumsden
,
Appl. Phys. Lett.
108
,
192403
(
2016
).
36.
T. J.
Williams
,
A. A.
Aczel
,
M. D.
Lumsden
,
S. E.
Nagler
,
M. B.
Stone
,
J.-Q.
Yan
, and
D.
Mandrus
,
Phys. Rev. B
92
,
144404
(
2015
).
37.
E. M.
Clements
,
R.
Das
,
L.
Li
,
P. J.
Lampen-Kelley
,
M.
Phan
,
V.
Keppens
,
D.
Mandrus
, and
H.
Srikanth
,
Sci. Rep.
7
,
6545
(
2017
).
38.
Y.
Ishikawa
,
G.
Shirane
,
J. A.
Tarvin
, and
M.
Kohgi
,
Phys. Rev. B
16
,
4956
(
1977
).
39.
P.
Boni
,
B.
Roessli
, and
K.
Hradil
,
J. Phys.: Condens. Matter
23
,
254209
(
2011
).

Supplementary Material

You do not currently have access to this content.