We have investigated the effect of crystalline structures on the thermal stability and electrical properties of nickel monogermanide (NiGe)/Ge contacts. The crystalline structure of the NiGe layer was found to be a determining factor for the thermal stability. Compared with the polycrystalline NiGe layer, the epitaxial NiGe layer with the orientation NiGe(100) ǁ Ge(110) exhibited a promising thermal stability due to its uniform interface and small residual stress. We have also demonstrated the alleviation of Fermi level pinning (FLP) by controlling the crystalline structures of NiGe layers on Ge(110) substrates. These works give us a hint that controlling the crystalline structure of metal layers enables one to control the Schottky barrier height of metal/Ge contacts, and the origin of FLP is not due to the intrinsic factor, e.g., metal induced gap states, but due to the extrinsic factors such as strong anisotropy of the work function and disorders at the metal/Ge interfaces.

1.
B.
De Schutter
,
K.
De Keyser
,
C.
Lavoie
, and
C.
Detavernier
,
Appl. Phys. Rev.
3
(
3
),
031302
(
2016
).
2.
S.
Gaudet
,
C.
Detavernier
,
C.
Lavoie
, and
P.
Desjardins
,
J. Appl. Phys.
100
(
3
),
034306
(
2006
).
3.
M. K.
Niranjan
,
L.
Kleinman
, and
A. A.
Demkov
,
Phys. Rev. B
75
(
8
),
085326
(
2007
).
4.
H.
Li
,
Y.
Guo
, and
J.
Robertson
,
Sci. Rep.
7
(
1
),
16669
(
2017
).
5.
K.
De Keyser
,
C.
Detavernier
,
R. L.
Van Meirhaeghe
,
J.
Jordan-Sweet
, and
C.
Lavoie
, “
The texture of thin NiSi films and its effect on agglomeration
,” in
Applications of Texture Analysis
, edited by
A. D.
Rollett
(
Wiley
,
2008
), pp.
1
9
.
6.
C.
Detavernier
and
C.
Lavoie
,
Appl. Phys. Lett.
84
(
18
),
3549
(
2004
).
7.
S.
Gaudet
,
C.
Detavernier
,
A. J.
Kellock
,
P.
Desjardins
, and
C.
Lavoie
,
J. Vac. Sci. Technol., A
24
(
3
),
474
(
2006
).
8.
H.
Pfisterer
and
K.
Schubert
,
Naturwissenschaften
37
(
5
),
112
(
1950
).
9.
C.
Perrin
,
D.
Mangelinck
,
F.
Nemouchi
,
J.
Labar
,
C.
Lavoie
,
C.
Bergman
, and
P.
Gas
,
Mater. Sci. Eng.: B
154–155
,
163
(
2008
).
10.
Y.
Deng
,
O.
Nakatsuka
,
J.
Yokoi
,
N.
Taoka
, and
S.
Zaima
,
Thin Solid Films
557
,
84
(
2014
).
11.
Y.
Deng
,
O.
Nakatsuka
,
A.
Suzuki
,
M.
Sakashita
, and
S.
Zaima
,
Solid-State Electron.
110
,
44
(
2015
).
12.
Y.
Deng
,
O.
Nakatsuka
,
M.
Sakashita
, and
S.
Zaima
,
Jpn. J. Appl. Phys. Part 1
54
(
5S
),
05EA01
(
2015
).
13.
H. B.
Yao
,
D. Z.
Chi
,
R.
Li
,
S. J.
Lee
, and
D. L.
Kwong
,
Appl. Phys. Lett.
89
(
24
),
242117
(
2006
).
14.
A.
Chawanda
,
K. T.
Roro
,
F. D.
Auret
,
W.
Mtangi
,
C.
Nyamhere
,
J.
Nel
, and
L.
Leach
,
Mater. Sci. Semicond. Process.
13
(
5-6
),
371
(
2010
).
15.
K.
Yamane
,
K.
Hamaya
,
Y.
Ando
,
Y.
Enomoto
,
K.
Yamamoto
,
T.
Sadoh
, and
M.
Miyao
,
Appl. Phys. Lett.
96
(
16
),
162104
(
2010
).
16.
T.
Nishimura
,
O.
Nakatsuka
,
S.
Akimoto
,
W.
Takeuchi
, and
S.
Zaima
,
Microelectron. Eng.
88
(
5
),
605
(
2011
).
17.
V.
Heine
,
Phys. Rev.
138
(
6A
),
A1689
(
1965
).
18.
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Lett.
91
(
12
),
123123
(
2007
).
19.
R. T.
Tung
,
Phys. Rev. Lett.
84
(
26
),
6078
(
2000
).
20.
A.
Dimoulas
,
P.
Tsipas
,
A.
Sotiropoulos
, and
E. K.
Evangelou
,
Appl. Phys. Lett.
89
(
25
),
252110
(
2006
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
22.
N. F.
Mott
, paper presented at the
Mathematical Proceedings of the Cambridge Philosophical Society
,
1938
.
23.
W.
Schottky
,
Naturwissenschaften
26
(
52
),
843
(
1938
).
24.
H.
Hasegawa
and
T.
Sawada
,
Thin Solid Films
103
(
1
),
119
(
1983
).
You do not currently have access to this content.