Layer-structured InSe is one of the intensively studied two-dimensional monochalcogenide semiconductors for optical and electrical devices. Significant features of the InSe device are the thickness dependent bandgap modification resulting in a peak shift of photoluminescence and a drastic variation of electron mobility. In this study, by applying the pulsed-laser deposition technique, we investigated the optical and electrical properties of c-axis oriented InSe films with the thickness varying from a few to hundred nanometers. The energy at the absorption edge systematically shifts from about 3.3 to 1.4 eV with the increasing thickness. The InSe films on Al2O3(0001) are highly resistive, while those on InP(111) are conductive, which probably originates from the valence mismatch effect at the interface. The electron mobility of the conducting charge carrier at the interface of InSe/InP is enhanced in thicker samples than the critical thickness of about 10 nm, corresponding to the bandgap modification characterized by the optical measurement. Therefore, the substrate and the film thickness are critically important factors for the materialization of InSe optical and electrical device applications.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
G.
Fiori
,
F.
Bonaccorso
,
G.
Iannaccone
,
T.
Palacios
,
D.
Neumaier
,
A.
Seabaugh
,
S. K.
Banerjee
, and
L.
Colombo
,
Nat. Nanotechnol.
9
,
768
(
2014
).
3.
S.
Latil
and
L.
Henrard
,
Phys. Rev. Lett.
97
,
036803
(
2006
).
4.
F.
Guinea
,
A. H.
Castro Neto
, and
N. M. R.
Peres
,
Phys. Rev. B
73
,
245426
(
2006
).
5.
C. L.
Song
,
Y. L.
Wang
,
Y. P.
Jiang
,
Z.
Li
,
L.
Wang
,
K.
He
,
X.
Chen
,
X. C.
Ma
, and
Q. K.
Xue
,
Phys. Rev. B
84
,
020503
(
2011
).
6.
X.
Xi
,
Z.
Wang
,
W.
Zhao
,
J. H.
Park
,
K. T.
Law
,
H.
Berger
,
L.
Forró
,
J.
Shan
, and
K. F.
Mak
,
Nat. Phys.
12
,
139
(
2016
).
7.
M.
Liao
,
Y.
Zang
,
Z.
Guan
,
H.
Li
,
Y.
Gong
,
K.
Zhu
,
X. P.
Hu
,
D.
Zhang
,
Y.
Xu
,
Y. Y.
Wang
,
K.
He
,
X. C.
Ma
,
S. C.
Zhang
, and
Q. K.
Xue
,
Nat. Phys.
14
,
344
(
2018
).
8.
L.
Li
,
Y.
Yu
,
G. J.
Ye
,
Q.
Ge
,
X.
Ou
,
H.
Wu
,
D.
Feng
,
X. H.
Chen
, and
Y.
Zhang
,
Nat. Nanotechnol.
9
,
372
(
2014
).
9.
X.
Cui
,
G.-H.
Lee
,
Y. D.
Kim
,
G.
Arefe
,
P. Y.
Huang
,
C.-H.
Lee
,
D. A.
Chenet
,
X.
Zhang
,
L.
Wang
,
F.
Ye
,
F.
Pizzocchero
,
B. S.
Jessen
,
K.
Watanabe
,
T.
Taniguchi
,
D. A.
Muller
,
T.
Low
,
P.
Kim
, and
J.
Hone
,
Nat. Nanotechnol.
10
,
534
(
2015
).
10.
J.
Camassel
,
P.
Merle
,
H.
Mathieu
, and
A.
Chevy
,
Phys. Rev. B
17
,
4718
(
1978
).
11.
J. F.
Sánchez-Royo
,
G.
Muñoz-Matutano
,
M.
Brotons-Gisbert
,
J. P.
Martínez-Pastor
,
A.
Segura
,
A.
Cantarero
,
R.
Mata
,
J.
Canet-Ferrer
,
G.
Tobias
,
E.
Canadell
,
J.
Marqués-Hueso
, and
B. D.
Gerardot
,
Nano Res.
7
,
1556
(
2014
).
12.
M.
Brotons-Gisbert
,
D.
Andres-Penares
,
J.
Suh
,
F.
Hidalgo
,
R.
Abargues
,
P. J.
Rodríguez-Cantó
,
A.
Segura
,
A.
Cros
,
G.
Tobias
,
E.
Canadell
,
P.
Ordejón
,
J.
Wu
,
J. P.
Martínez-Pastor
, and
J. F.
Sánchez-Royo
,
Nano Lett.
16
,
3221
(
2016
).
13.
D. A.
Bandurin
,
A. V.
Tyurnina
,
G. L.
Yu
,
A.
Mishchenko
,
V.
Zólyomi
,
S. V.
Morozov
,
R. K.
Kumar
,
R. V.
Gorbachev
,
Z. R.
Kudrynskyi
,
S.
Pezzini
,
Z. D.
Kovalyuk
,
U.
Zeitler
,
K. S.
Novoselov
,
A.
Patanè
,
L.
Eaves
,
I. V.
Grigorieva
,
V. I.
Fal'Ko
,
A. K.
Geim
, and
Y.
Cao
,
Nat. Nanotechnol.
12
,
223
(
2017
).
14.
S. J.
Magorrian
,
V.
Zólyomi
, and
V. I.
Fal'Ko
,
Phys. Rev. B
94
,
245431
(
2016
).
15.
W.
Feng
,
W.
Zheng
,
W.
Cao
, and
P.
Hu
,
Adv. Mater.
26
,
6587
(
2014
).
16.
S.
Sucharitakul
,
N. J.
Goble
,
U. R.
Kumar
,
R.
Sankar
,
Z. A.
Bogorad
,
F. C.
Chou
,
Y. T.
Chen
, and
X. P. A.
Gao
,
Nano Lett.
15
,
3815
(
2015
).
17.
S. R.
Tamalampudi
,
Y. Y.
Lu
,
U. R.
Kumar
,
R.
Sankar
,
C.
Da Liao
,
K. B.
Moorthy
,
C. H.
Cheng
,
F. C.
Chou
, and
Y. T.
Chen
,
Nano Lett.
14
,
2800
(
2014
).
18.
X. P.
Wang
,
X. B.
Li
,
N. K.
Chen
,
J. H.
Zhao
,
Q. D.
Chen
, and
H. B.
Sun
,
Phys. Chem. Chem. Phys.
20
,
6945
(
2018
).
19.
H.
Wang
,
J.
Shi
,
P.
Huang
,
Y.
Ding
,
M.
Wu
,
Y.
Cen
, and
T.
Yu
,
Physica E
98
,
66
(
2018
).
20.
D.
Wang
,
X.
Li
, and
H.
Sun
,
Nanoscale
9
,
11619
(
2017
).
21.
M.
Budiman
,
A.
Yamada
, and
M.
Konagai
,
Jpn. J. Appl. Phys., Part 1
37
,
4092
(
1998
).
22.
T.
Hayashi
,
K.
Ueno
,
K.
Saiki
, and
A.
Koma
,
J. Cryst. Growth
219
,
115
(
2000
).
23.
J.
Zhou
,
J.
Shi
,
Q.
Zeng
,
Y.
Chen
,
L.
Niu
,
F.
Liu
,
T.
Yu
,
K.
Suenaga
,
X.
Liu
,
J.
Lin
, and
Z.
Liu
,
2D Mater.
5
,
025019
(
2018
).
24.
Z.
Yang
,
W.
Jie
,
C. H.
Mak
,
S.
Lin
,
H.
Lin
,
X.
Yang
,
F.
Yan
,
S. P.
Lau
, and
J.
Hao
,
ACS Nano
11
,
4225
(
2017
).
25.
R.
Damon
and
R.
Redington
,
Phys. Rev.
96
,
1498
(
1954
).
26.
T.
Cheiwchanchamnangij
and
W. R. L.
Lambrecht
,
Phys. Rev. B
85
,
205302
(
2012
).
27.
X.
Peng
,
Q.
Wei
, and
A.
Copple
,
Phys. Rev. B
90
,
085402
(
2014
).
28.
K.
Kunc
and
R. M.
Martin
,
Phys. Rev. B
24
,
3445
(
1981
).
29.
30.
O.
Lang
,
C.
Pettenkofer
,
J. F.
Sánchez-Royo
,
A.
Segura
,
A.
Klein
, and
W.
Jaegermann
,
J. Appl. Phys.
86
,
5687
(
1999
).
31.
K. R.
Asmis
,
T. R.
Taylor
, and
D. M.
Neumark
,
Chem. Phys. Lett.
308
,
347
(
1999
).

Supplementary Material

You do not currently have access to this content.