Recently, quenching lead-free non-ergodic relaxor Na1/2Bi1/2TiO3-BaTiO3 (NBT-BT) materials has been reported to increase the thermal depolarization temperature and enhance the lattice distortion. Driven by the conjecture that enhanced lattice distortion is typically associated with the onset of ferroelectric order, two non-ergodic relaxor NBT-BT compositions at the morphotropic phase boundary were investigated. As evident from the temperature-dependent permittivity, both compositions exhibit a stabilization of ferroelectric order upon quenching. An increase in the depolarization temperature by 40–60 °C is observed. Moreover, the composition with higher tetragonality undergoes a spontaneous relaxor-ferroelectric transition upon quenching. Annealing in oxygen atmosphere is shown to revert back the quenching-induced ferroelectric order to the relaxor state.

1.
G. A.
Samara
,
J. Phys. Condens. Matter
15
,
R367
(
2003
).
2.
S.-E.
Park
and
T. R.
Shrout
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1140
(
1997
).
3.
L. E.
Cross
,
Ferroelectrics
76
,
241
(
1987
).
4.
G. A.
Samara
and
E. L.
Venturini
,
Phase Transitions
79
,
21
(
2006
).
5.
R. A.
Cowley
,
S. N.
Gvasaliya
,
S. G.
Lushnikov
,
B.
Roessli
, and
G. M.
Rotaru
,
Adv. Phys.
60
,
229
(
2011
).
6.
F.
Li
,
D.
Lin
,
Z.
Chen
,
Z.
Cheng
,
J.
Wang
,
C.
Li
,
Z.
Xu
,
Q.
Huang
,
X.
Liao
,
L.-Q.
Chen
,
T. R.
Shrout
, and
S.
Zhang
,
Nat. Mater.
17
,
349
(
2018
).
7.
L. E.
Cross
,
Ferroelectrics
151
,
305
(
1994
).
8.
A. A.
Bokov
and
Z.-G.
Ye
, in
Frontiers of Ferroelectricity
(
Springer
US
,
2007
), pp.
31
52
.
9.
B.
Hehlen
,
M.
Al-Sabbagh
,
A.
Al-Zein
, and
J.
Hlinka
,
Phys. Rev. Lett.
117
,
155501
(
2016
).
10.
H.
Takenaka
,
I.
Grinberg
,
S.
Liu
, and
A. M.
Rappe
,
Nature
546
,
391
(
2017
).
11.
C. G. F.
Stenger
,
F. L.
Scholten
, and
A. J.
Burggraaf
,
Solid State Commun.
32
,
989
(
1979
).
12.
N.
Setter
and
L. E.
Cross
,
J. Appl. Phys.
51
,
4356
(
1980
).
13.
T.
Takenaka
,
K.
Maruyama
, and
K.
Sakata
,
Jpn. J. Appl. Phys. Part 1
30
,
2236
(
1991
).
14.
W.
Jo
,
S.
Schaab
,
E.
Sapper
,
L. A.
Schmitt
,
H.-J.
Kleebe
,
A. J.
Bell
, and
J.
Rödel
,
J. Appl. Phys.
110
,
074106
(
2011
).
15.
J.
Petzelt
,
D.
Nuzhnyy
,
V.
Bovtun
,
M.
Kempa
,
M.
Savinov
,
S.
Kamba
, and
J.
Hlinka
,
Phase Transitions
88
,
320
(
2015
).
16.
W.
Ge
,
C. P.
Devreugd
,
D.
Phelan
,
Q.
Zhang
,
M.
Ahart
,
J.
Li
,
H.
Luo
,
L. A.
Boatner
,
D.
Viehland
, and
P. M.
Gehring
,
Phys. Rev. B
88
,
174115
(
2013
).
17.
R.
Garg
,
B. N.
Rao
,
A.
Senyshyn
,
P. S. R.
Krishna
, and
R.
Ranjan
,
Phys. Rev. B
88
,
014103
(
2013
).
18.
R.
Dittmer
,
W.
Jo
,
E.
Aulbach
,
T.
Granzow
, and
J.
Rödel
,
J. Appl. Phys.
112
,
014101
(
2012
).
19.
R.
Dittmer
,
D.
Gobeljic
,
W.
Jo
,
V. V.
Shvartsman
,
D. C.
Lupascu
,
J. L.
Jones
, and
J.
Rödel
,
J. Appl. Phys.
115
,
084111
(
2014
).
20.
F. H.
Schader
,
Z.
Wang
,
M.
Hinterstein
,
J. E.
Daniels
, and
K. G.
Webber
,
Phys. Rev. B
93
,
134111
(
2016
).
21.
L. M.
Riemer
,
K. V.
Lalitha
,
X.
Jiang
,
N.
Liu
,
C.
Dietz
,
R. W.
Stark
,
P. B.
Groszewicz
,
G.
Buntkowsky
,
J.
Chen
,
S.-T.
Zhang
,
J.
Rödel
, and
J.
Koruza
,
Acta Mater.
136
,
271
(
2017
).
22.
F.
Craciun
,
C.
Galassi
, and
R.
Birjega
,
J. Appl. Phys.
112
,
124106
(
2012
).
23.
M.
Hinterstein
,
L. A.
Schmitt
,
M.
Hoelzel
,
W.
Jo
,
J.
Rödel
,
H.-J.
Kleebe
, and
M.
Hoffman
,
Appl. Phys. Lett.
106
,
222904
(
2015
).
24.
E.
Sapper
,
S.
Schaab
,
W.
Jo
,
T.
Granzow
, and
J.
Rödel
,
J. Appl. Phys.
111
,
014105
(
2012
).
25.
W.
Jo
,
J.
Daniels
,
D.
Damjanovic
,
W.
Kleemann
, and
J.
Rödel
,
Appl. Phys. Lett.
102
,
192903
(
2013
).
26.
W.
Bai
,
D.
Chen
,
P.
Zheng
,
B.
Shen
,
J.
Zhai
, and
Z.
Ji
,
Dalton Trans.
45
,
8573
(
2016
).
27.
J.
Zang
,
W.
Jo
, and
J.
Rödel
,
Appl. Phys. Lett.
102
,
032901
(
2013
).
28.
H.
Muramatsu
,
H.
Nagata
, and
T.
Takenaka
,
Jpn. J. Appl. Phys. Part 1
55
,
10TB07
(
2016
).
29.
T.
Miura
,
H.
Nagata
, and
T.
Takenaka
,
Jpn. J. Appl. Phys. Part 1
56
,
10PD05
(
2017
).
30.
T.
Leist
,
J.
Chen
,
W.
Jo
,
E.
Aulbach
,
J.
Suffner
, and
J.
Rödel
,
J. Am. Ceram. Soc.
95
,
711
(
2012
).
31.
W.
Jo
,
J. E.
Daniels
,
J. L.
Jones
,
X.
Tan
,
P. A.
Thomas
,
D.
Damjanovic
, and
J.
Rödel
,
J. Appl. Phys.
109
,
014110
(
2011
).
32.
F.
Chu
,
I. M.
Reaney
, and
N.
Setter
,
J. Appl. Phys.
77
,
1671
(
1995
).
33.
F.
Chu
,
N.
Setter
, and
A. K.
Tagantsev
,
J. Appl. Phys.
74
,
5129
(
1993
).
34.
F. D.
Morrison
,
D. C.
Sinclair
, and
A. R.
West
,
J. Am. Ceram. Soc.
84
,
531
(
2001
).
35.
X.
Wang
,
P.
Ren
,
H.
Tian
,
H.
Fan
,
C.
Cai
, and
W.
Liu
,
J. Alloys Compd.
669
,
29
(
2016
).
37.
Y.
Noguchi
,
I.
Miwa
,
Y.
Goshima
, and
M.
Miyayama
,
Jpn. J. Appl. Phys. Part 2
39
,
L1259
(
2000
).
38.
M. V.
Raymond
and
D. M.
Smyth
,
J. Phys. Chem. Solids
57
,
1507
(
1996
).
39.
T.
Rojac
,
A.
Bencan
,
G.
Drazic
,
N.
Sakamoto
,
H.
Ursic
,
B.
Jancar
,
G.
Tavcar
,
M.
Makarovic
,
J.
Walker
,
B.
Malic
, and
D.
Damjanovic
,
Nat. Mater.
16
,
322
(
2017
).
40.
R.
Guo
,
A. S.
Bhalla
,
G.
Burns
, and
F. H.
Dacol
,
Ferroelectrics
93
,
397
(
1989
).
41.
W.-H.
Huang
,
Z.
Xu
, and
D.
Viehland
,
Philos. Mag. A
71
,
219
(
1995
).
42.
M. D.
Glinchuk
,
E. A.
Eliseev
,
G.
Li
,
J.
Zeng
,
S. V.
Kalinin
, and
A. N.
Morozovska
,
Phys. Rev. B
98
,
094102
(
2018
).
43.
C.
Ma
,
H.
Guo
,
S. P.
Beckman
, and
X.
Tan
,
Phys. Rev. Lett.
109
,
107602
(
2012
).
44.
L. K. V.
,
L. M.
Riemer
,
J.
Koruza
, and
J.
Rödel
,
Appl. Phys. Lett.
111
,
022905
(
2017
).

Supplementary Material

You do not currently have access to this content.