Up until recently, the rational design of mechanical metamaterials has usually involved devising geometrical arrangements of micro-architectures that deliver unusual properties on the macro-scale. A less explored route to rational design is spatially distributing materials with different properties within lattice structures to achieve the desired mechanical properties. Here, we used computational models and advanced multi-material 3D printing techniques to rationally design and additively manufacture multi-material cellular solids for which the elastic modulus and Poisson's ratio could be independently tailored in different (anisotropic) directions. The random assignment of a hard phase to originally soft cellular structures with an auxetic, zero Poisson's ratio, and conventional designs allowed us to cover broad regions of the elastic modulus-Poisson's ratio plane. Patterned designs of the hard phase were also used and were found to be effective in the independent tuning of the elastic properties. Close inspection of the strain distributions associated with the different types of material distributions suggests that locally deflected patterns of deformation flow and strain localizations are the main underlying mechanisms driving the above-mentioned adjustments in the mechanical properties.

1.
A.
Alderson
and
K.
Alderson
, “
Auxetic materials
,”
Proc. Inst. Mech. Eng., Part G
221
(
4
),
565
575
(
2007
).
2.
K. E.
Evans
and
A.
Alderson
, “
Auxetic materials: Functional materials and structures from lateral thinking!
,”
Adv. Mater.
12
(
9
),
617
628
(
2000
).
3.
X.
Ren
,
R.
Das
,
P.
Tran
,
T. D.
Ngo
, and
Y. M.
Xie
, “
Auxetic metamaterials and structures: A review
,”
Smart Mater. Struct.
27
(
2
),
023001
(
2018
).
4.
R.
Lakes
, “
Negative Poisson's ratio materials: Response
,”
Science
238
,
551
(
1987
).
5.
H.
Yasuda
and
J.
Yang
, “
Reentrant origami-based metamaterials with negative Poisson's ratio and bistability
,”
Phys. Rev. Lett.
114
(
18
),
185502
(
2015
).
6.
M.
Mirzaali
,
S.
Janbaz
,
M.
Strano
,
L.
Vergani
, and
A.
Zadpoor
, “
Shape-matching soft mechanical metamaterials
,”
Sci. Rep.
8
(
1
),
965
(
2018
).
7.
Z. G.
Nicolaou
and
A. E.
Motter
, “
Mechanical metamaterials with negative compressibility transitions
,”
Nat. Mater.
11
(
7
),
608
613
(
2012
).
8.
K.
Dudek
,
R.
Gatt
,
M.
Dudek
, and
J.
Grima
, “
Negative and positive stiffness in auxetic magneto-mechanical metamaterials
,”
Proc. R. Soc. A
474
(
2215
),
20180003
(
2018
).
9.
M.
Mirzaali
,
M.
Habibi
,
S.
Janbaz
,
L.
Vergani
, and
A.
Zadpoor
, “
Crumpling-based soft metamaterials: The effects of sheet pore size and porosity
,”
Sci. Rep.
7
(
1
),
13028
(
2017
).
10.
Q.
Wang
,
J. A.
Jackson
,
Q.
Ge
,
J. B.
Hopkins
,
C. M.
Spadaccini
, and
N. X.
Fang
, “
Lightweight mechanical metamaterials with tunable negative thermal expansion
,”
Phys. Rev. Lett.
117
(
17
),
175901
(
2016
).
11.
D.
Chen
and
X.
Zheng
, “
Multi-material additive manufacturing of metamaterials with giant, tailorable negative Poisson's ratios
,”
Sci. Rep.
8
,
9139
(
2018
).
12.
P.
Vogiatzis
,
S.
Chen
,
X.
Wang
,
T.
Li
, and
L.
Wang
, “
Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method
,”
Comput.-Aided Des.
83
,
15
32
(
2017
).
13.
Y.
Wang
,
J.
Gao
,
Z.
Luo
,
T.
Brown
, and
N.
Zhang
, “
Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials
,”
Eng. Optim.
49
(
1
),
22
42
(
2017
).
14.
S.
Janbaz
,
M.
McGuinness
, and
A. A.
Zadpoor
, “
Multimaterial control of instability in soft mechanical metamaterials
,”
Phys. Rev. Appl.
9
(
6
),
064013
(
2018
).
15.
M.
Mirzaali
,
M.
Edens
,
A. H.
de la Nava
,
S.
Janbaz
,
P.
Vena
,
E.
Doubrovski
, and
A.
Zadpoor
, “
Length-scale dependency of biomimetic hard-soft composites
,”
Sci. Rep.
8
(
1
),
12052
(
2018
).
16.
K.
Wang
,
Y.-H.
Chang
,
Y.
Chen
,
C.
Zhang
, and
B.
Wang
, “
Designable dual-material auxetic metamaterials using three-dimensional printing
,”
Mater. Des.
67
,
159
164
(
2015
).
17.
M.
Mirzaali
,
R.
Hedayati
,
P.
Vena
,
L.
Vergani
,
M.
Strano
, and
A.
Zadpoor
, “
Rational design of soft mechanical metamaterials: Independent tailoring of elastic properties with randomness
,”
Appl. Phys. Lett.
111
(
5
),
051903
(
2017
).
18.
H. M.
Kolken
,
S.
Janbaz
,
S. M.
Leeflang
,
K.
Lietaert
,
H. H.
Weinans
, and
A. A.
Zadpoor
, “
Rationally designed meta-implants: A combination of auxetic and conventional meta-biomaterials
,”
Mater. Horiz.
5
(
1
),
28
35
(
2018
).
19.
R.
Hedayati
,
M.
Mirzaali
,
L.
Vergani
, and
A.
Zadpoor
, “
Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces
,”
APL Mater.
6
(
3
),
036101
(
2018
).
20.
I.
Masters
and
K.
Evans
, “
Models for the elastic deformation of honeycombs
,”
Compos. Struct.
35
(
4
),
403
422
(
1996
).

Supplementary Material

You do not currently have access to this content.