Small manufacturing-tolerant photonic crystal cavities are systematically designed using topology optimization to enhance the ratio between the quality factor and mode volume, Q/V. For relaxed manufacturing tolerance, a cavity with a bow-tie shape is obtained which confines light beyond the diffraction limit into a deep-subwavelength volume. Imposition of a small manufacturing tolerance still results in efficient designs, however, with diffraction-limited confinement. Inspired by numerical results, an elliptic ring grating cavity concept is extracted via geometric fitting. Numerical evaluations demonstrate that for small sizes, topology-optimized cavities enhance the Q/V-ratio by up to two orders of magnitude relative to standard L1 cavities and more than one order of magnitude relative to shape-optimized L1 cavities. An increase in cavity size can enhance the Q/V-ratio by an increase in the Q-factor without a significant increase in V. Comparison between optimized and reference cavities illustrates that significant reduction of V requires big topological changes in the cavity.

1.
O.
Painter
,
R.
Lee
,
A.
Scherer
,
A.
Yariv
,
J.
O'brien
,
P.
Dapkus
, and
I.
Kim
, “
Two-dimensional photonic band-gap defect mode laser
,”
Science
284
,
1819
1821
(
1999
).
2.
Y.
Ota
,
K.
Watanabe
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Nanocavity-based self-frequency conversion laser
,”
Opt. Express
21
,
19778
19789
(
2013
).
3.
S.
Matsuo
,
T.
Sato
,
K.
Takeda
,
A.
Shinya
,
K.
Nozaki
,
H.
Taniyama
,
M.
Notomi
,
K.
Hasebe
, and
T.
Kakitsuka
, “
Ultralow operating energy electrically driven photonic crystal lasers
,”
IEEE J. Sel. Top. Quantum Electron.
19
,
4900311
4900311
(
2013
).
4.
W.
Xue
,
Y.
Yu
,
L.
Ottaviano
,
Y.
Chen
,
E.
Semenova
,
K.
Yvind
, and
J.
Mørk
, “
Threshold characteristics of slow-light photonic crystal lasers
,”
Phys. Rev. Lett.
116
,
063901
(
2016
).
5.
G.
Pitruzzello
and
T. F.
Krauss
, “
Photonic crystal resonances for sensing and imaging
,”
J. Opt.
20
,
073004
(
2018
).
6.
M.
Soljacic
and
J. D.
Joannopoulos
, “
Enhancement of nonlinear effects using photonic crystals
,”
Nat. Mater.
3
,
211
219
(
2004
).
7.
T.
Tiecke
,
J. D.
Thompson
,
N. P.
de Leon
,
L.
Liu
,
V.
Vuletić
, and
M. D.
Lukin
, “
Nanophotonic quantum phase switch with a single atom
,”
Nature
508
,
241
(
2014
).
8.
C.
Husko
,
A.
De Rossi
,
S.
Combrié
,
Q. V.
Tran
,
F.
Raineri
, and
C. W.
Wong
, “
Ultrafast all-optical modulation in GaAs photonic crystal cavities
,”
Appl. Phys. Lett.
94
,
021111
(
2009
).
9.
Y.
Yu
,
Y.
Chen
,
H.
Hu
,
W.
Xue
,
K.
Yvind
, and
J.
Mørk
, “
Nonreciprocal transmission in a nonlinear photonic crystal Fano structure with broken symmetry
,”
Laser Photonics Rev.
9
,
241
247
(
2015
).
10.
T. J.
Kippenberg
and
K. J.
Vahala
, “
Cavity optomechanics: Back-action at the mesoscale
,”
Science
321
,
1172
1176
(
2008
).
11.
E. M.
Purcell
, “
Spontaneous emission probabilities at radio frequencies
,”
Phys. Rev.
69
,
681
(
1946
).
12.
Y.
Akahane
,
T.
Asano
,
B.-S.
Song
, and
S.
Noda
, “
High-Q photonic nanocavity in a two-dimensional photonic crystal
,”
Nature
425
,
944
(
2003
).
13.
U. P.
Dharanipathy
,
M.
Minkov
,
M.
Tonin
,
V.
Savona
, and
R.
Houdr
, “
High-Q silicon photonic crystal cavity for enhanced optical nonlinearities
,”
Appl. Phys. Lett.
105
,
101101
(
2014
).
14.
M.
Minkov
and
V.
Savona
, “
Automated optimization of photonic crystal slab cavities
,”
Sci. Rep.
4
,
5124
(
2014
).
15.
J. B.
Khurgin
, “
How to deal with the loss in plasmonics and metamaterials
,”
Nat. Nanotechnol.
10
,
2
(
2015
).
16.
W. R.
Frei
,
H.
Johnson
, and
K. D.
Choquette
, “
Optimization of a single defect photonic crystal laser cavity
,”
J. Appl. Phys.
103
,
033102
(
2008
).
17.
D.
Wang
,
Z.
Yu
,
Y.
Liu
,
X.
Guo
,
C.
Shu
,
S.
Zhou
, and
J.
Zhang
, “
Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity
,”
J. Opt.
15
,
125102
(
2013
).
18.
A.
Gondarenko
and
M.
Lipson
, “
Low modal volume dipole-like dielectric slab resonator
,”
Opt. Express
16
,
17689
17694
(
2008
).
19.
Q.
Lu
,
F.-J.
Shu
, and
C.-L.
Zou
, “
Dielectric bow-tie nanocavity
,”
Opt. Lett.
38
,
5311
5314
(
2013
).
20.
S.
Hu
and
S. M.
Weiss
, “
Design of photonic crystal cavities for extreme light concentration
,”
ACS Photonics
3
,
1647
1653
(
2016
).
21.
H.
Choi
,
M.
Heuck
, and
D.
Englund
, “
Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities
,”
Phys. Rev. Lett.
118
,
223605
(
2017
).
22.
K.
Yamazaki
and
H.
Yamaguchi
, “
Renovation of three-dimensional electron beam lithography for improvement of positioning accuracy and reduction of turnaround time
,”
Jpn. J. Appl. Phys. Part 1
54
,
06FD02
(
2015
).
23.
S.
Hu
,
M.
Khater
,
R.
Salas-Montiel
,
E.
Kratschmer
,
S.
Engelmann
,
W. M.
Green
, and
S. M.
Weiss
, “
Experimental realization of deep-subwavelength confinement in dielectric optical resonators
,”
Sci. Adv.
4
,
eaat2355
(
2018
).
24.
X.
Liang
and
S. G.
Johnson
, “
Formulation for scalable optimization of microcavities via the frequency-averaged local density of states
,”
Opt. Express
21
,
30812
30841
(
2013
).
25.
J.
Mork
and
G.
Lippi
, “
Rate equation description of quantum noise in nanolasers with few emitters
,”
Appl. Phys. Lett.
112
,
141103
(
2018
).
26.
S.
Balay
,
S.
Abhyankar
,
M. F.
Adams
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
L.
Dalcin
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
D. A.
May
,
L. C.
McInnes
,
R. T.
Mills
,
T.
Munson
,
K.
Rupp
,
P.
Sanan
,
B. F.
Smith
,
S.
Zampini
,
H.
Zhang
, and
H.
Zhang
, “
PETSc users manual,” Technical Report ANL-95/11—Revision 3.9
(Argonne National Laboratory,
2018
).
27.
P. R.
Amestoy
,
I. S.
Duff
,
J.
Koster
, and
J.-Y.
L'Excellent
, “
A fully asynchronous multifrontal solver using distributed dynamic scheduling
,”
SIAM J. Matrix Anal. Appl.
23
,
15
41
(
2001
).
28.
R. E.
Christiansen
,
J.
Vester-Petersen
,
S. P.
Madsen
, and
O.
Sigmund
, “
A non-linear material interpolation for design of metallic nano-particles using topology optimization
,”
Comput. Methods Appl. Mech. Eng.
343
,
23
39
(
2019
).
29.
K.
Svanberg
, “
The method of moving asymptotes - a new method for structural optimization
,”
Int. J. Numer. Methods Eng.
24
,
359
373
(
1987
).
30.
J. S.
Jensen
and
O.
Sigmund
, “
Topology optimization for nano-photonics
,”
Laser Photonics Rev.
5
,
308
321
(
2011
).
31.
J. R.
de Lasson
,
L. H.
Frandsen
,
P.
Gutsche
,
S.
Burger
,
O. S.
Kim
,
O.
Breinbjerg
,
A.
Ivinskaya
,
F.
Wang
,
O.
Sigmund
,
T.
Häyrynen
,
J.
Mørk
, and
N.
Gregersen
, “
Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities
,”
Opt. Express
26
,
11366
11392
(
2018
).
32.
F.
Wang
,
B. S.
Lazarov
, and
O.
Sigmund
, “
On projection methods, convergence and robust formulations in topology optimization
,”
Struct. Multidiscip. Optim.
43
,
767
784
(
2011
).
33.
M.
Zhou
,
B. S.
Lazarov
,
F.
Wang
, and
O.
Sigmund
, “
Minimum length scale in topology optimization by geometric constraints
,”
Comput. Methods Appl. Mech. Eng.
293
,
266
282
(
2015
).
34.
D.
Conteduca
,
C.
Reardon
,
M. G.
Scullion
,
F.
DellOlio
,
M. N.
Armenise
,
T. F.
Krauss
, and
C.
Ciminelli
, “
Ultra-high Q/V hybrid cavity for strong light-matter interaction
,”
APL Photonics
2
,
086101
(
2017
).
35.
M. L.
Juan
,
M.
Righini
, and
R.
Quidant
, “
Plasmon nano-optical tweezers
,”
Nat. Photonics
5
,
349
356
(
2011
).
You do not currently have access to this content.