We report enhanced gate stack stability in GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs) by using a bilayer SiNx as the gate dielectric. To obtain the bilayer gate dielectric scheme, a thin Si-rich SiNx interlayer was deposited before a high-resistivity SiNx layer by low pressure chemical vapor deposition. The Si-rich SiNx can effectively suppress the trapping phenomenon at the interface of the dielectric/AlGaN barrier. The upper high-resistivity SiNx layer can greatly block the gate leakage current to enable a large gate swing. Compared with the MISHEMTs using a single Si-rich or high-resistivity SiNx layer, the MISHEMTs with a bilayer gate dielectric take the advantages of both, realizing a gate stack with a stable threshold voltage and low leakage current. These results thus present great potential for developing high-performance GaN MISHEMTs using the bilayer SiNx gate dielectric scheme for highly efficient power applications.

1.
M. V.
Hove
,
S.
Boulay
,
S. R.
Bahl
,
S.
Stoffels
,
X.
Kang
,
D.
Wellekens
,
K.
Geens
,
A.
Delabie
, and
S.
Decoutere
,
IEEE Electron Device Lett.
33
,
667
(
2012
).
2.
Z.
Yatabe
,
J. T.
Asubar
, and
T.
Hashizume
,
J. Phys. D: Appl. Phys.
49
,
393001
(
2016
).
3.
M.
Hua
,
C.
Liu
,
S.
Yang
,
S.
Liu
,
K.
Fu
,
Z.
Dong
,
Y.
Cai
,
B.
Zhang
, and
K. J.
Chen
,
IEEE Electron Device Lett.
36
,
448
(
2015
).
4.
Z.
Zhang
,
G.
Yu
,
X.
Zhang
,
X.
Deng
,
S.
Li
,
Y.
Fan
,
S.
Sun
,
L.
Song
,
S.
Tan
,
D.
Wu
,
W.
Li
,
W.
Huang
,
K.
Fu
,
Y.
Cai
,
Q.
Sun
, and
B.
Zhang
,
IEEE Trans. Electron Devices
63
,
731
(
2016
).
5.
X.
Lu
,
K.
Yu
,
H.
Jiang
,
A.
Zhang
, and
K. M.
Lau
,
IEEE Trans. Electron Devices
64
,
824
(
2017
).
6.
T.
Huang
,
A.
Malmros
,
J.
Bergsten
,
S.
Gustafsson
,
O.
Axelsson
,
M.
Thorsell
, and
N.
Rorsman
,
IEEE Electron Device Lett.
36
,
537
(
2015
).
7.
W. M.
Waller
,
M.
Gajda
,
S.
Pandey
,
J. J. T. M.
Donkers
,
D.
Calton
,
J.
Croon
,
S.
Karboyan
,
J.
Sonsky
,
M. J.
Uren
, and
M.
Kuball
,
IEEE Trans. Electron Devices
64
,
1197
(
2017
).
8.
Z.
Zhang
,
W.
Li
,
K.
Fu
,
G.
Yu
,
X.
Zhang
,
Y.
Zhao
,
S.
Sun
,
L.
Song
,
X.
Deng
,
Z.
Xing
,
L.
Yang
,
R.
Ji
,
C.
Zeng
,
Y.
Fan
,
Z.
Dong
,
Y.
Cai
, and
B.
Zhang
,
IEEE Electron Device Lett.
38
,
236
(
2017
).
9.
M.
Hua
,
Y.
Lu
,
S.
Liu
,
C.
Liu
,
K.
Fu
,
Y.
Cai
,
B.
Zhang
, and
K. J.
Chen
,
IEEE Electron Device Lett.
37
,
265
(
2016
).
10.
T.
Huang
,
J.
Bergsten
,
M.
Thorsell
, and
N.
Rorsman
,
IEEE Trans. Electron Devices
65
,
908
(
2018
).
11.
P.
Lagger
,
P.
Steinschifter
,
M.
Reiner
,
M.
Stadtmuller
,
G.
Denifl
,
A.
Naumann
,
J.
Muller
,
L.
Wilde
,
J.
Sundqvist
,
D.
Pogany
, and
C.
Ostermaier
,
Appl. Phys. Lett.
105
,
033512
(
2014
).
12.
P. D.
Ye
,
B.
Yang
,
K. K.
Ng
,
J.
Bude
,
G. D.
Wilk
,
S.
Halder
, and
J. C. M.
Hwang
,
Appl. Phys. Lett.
86
,
063501
(
2005
).
13.
O.
Ambacher
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
, and
L.
Wittmer
,
J. Appl. Phys.
85
,
3222
(
1999
).
14.
M.
Capriotti
,
A.
Alexewicz
,
C.
Fleury
,
M.
Gavagnin
,
O.
Bethge
,
D.
Visalli
,
J.
Derluyn
,
H. D.
Wanzenbock
,
E.
Bertagnolli
,
D.
Pogany
, and
G.
Strasser
,
Appl. Phys. Lett.
104
,
113502
(
2014
).
15.
M.
Tapajna
and
J.
Kuzmik
,
Appl. Phys. Lett.
100
,
113509
(
2012
).
16.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
A. J.
Sierakowski
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
A.
Mitchell
, and
M.
Stutzmann
,
J. Appl. Phys.
87
,
334
(
2000
).
17.
H.
Jiang
,
C.
Liu
,
Y.
Chen
,
X.
Lu
,
C. W.
Tang
, and
K. M.
Lau
,
IEEE Trans. Electron Devices
64
,
832
(
2017
).
18.
T.-L.
Wu
,
D.
Marcon
,
B.
Bakeroot
,
B. D.
Jaeger
,
H. C.
Lin
,
J.
Franco
,
S.
Stoffels
,
M. V.
Hove
,
R.
Roelofs
,
G.
Groeseneken
, and
S.
Decoutere
,
Appl. Phys. Lett.
107
,
093507
(
2015
).
You do not currently have access to this content.