Recent advances in the study of thermoelectric materials mainly focus on the developments or designs of methods to reduce thermal conductivities. The information of phonon scattering processes is the key to the understanding of the thermal transfer and transport of a material. Such information is essential for the understanding of the thermal conductivity of a material itself and for the further improvement to demand the requirements for technological applications. Recently, palladium sulfide has been examined as a potential thermoelectric material. However, the high thermal conductivity limits its thermoelectric performance and technological applications. Here, Raman scattering spectroscopy is used to investigate the thermal transport properties of this material over a wide range of temperatures. The nonlinear temperature-dependent frequencies and linewidths of the Raman modes illustrate the anharmonicity of phonon scattering for thermal transport in this material. Three-phonon scattering processes are found to account for the thermal transport in the temperature range of 10–620 K. The high-energy bands of the Bg mode related to the light atom (S) contribute most to the thermal transport properties. More phonon scattering processes including higher orders are seemingly needed to further reduce the thermal conductivity of this material.

1.
G.
Chen
,
M. S.
Dresselhaus
,
G.
Dresselhaus
,
J. P.
Fleurial
, and
T.
Cailla
, “
Recent developments in thermoelectric materials
,”
Int. Mater. Rev.
48
,
45
(
2003
).
2.
G. J.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
(
2008
).
3.
L. E.
Bell
, “
Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
,”
Science
321
,
1457
(
2008
).
4.
X.
Shi
,
L. D.
Chen
, and
C.
Uher
, “
Recent advances in high-performance bulk thermoelectric materials
,”
Int. Mater. Rev.
61
,
379
(
2016
).
5.
Z. F.
Ren
,
Y. C.
Lan
, and
Q. Y.
Zhang
,
Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems
(
CRC Press
,
2017
).
6.
X.
Lu
,
D. T.
Morelli
,
Y.
Xia
,
F.
Zhou
,
V.
Ozolins
,
H.
Chi
,
X. Y.
Zhou
, and
C.
Uher
, “
High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites
,”
Adv. Energy Mater.
3
,
342
(
2013
).
7.
C.
Wan
,
Y.
Wang
,
N.
Wang
,
W.
Norimatsu
,
M.
Kusunoki
, and
K.
Koumoto
, “
Development of novel thermoelectric materials by reduction of lattice thermal conductivity
,”
Sci. Technol. Adv. Mater.
11
,
044306
(
2010
).
8.
Y.
He
,
T.
Day
,
T.
Zhang
,
H.
Liu
,
X.
Shi
,
L. D.
Chen
, and
G. J.
Snyder
, “
High thermoelectric performance in non-toxic earth-abundant copper sulfide
,”
Adv. Mater.
26
,
3974
(
2014
).
9.
L. D.
Zhao
,
S. H.
Lo
,
J.
He
,
H.
Li
,
K.
Biswas
,
J.
Androulakis
,
C. I.
Wu
,
T. P.
Hogan
,
D. Y.
Chung
, and
V. P.
Dravid
, “
High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures
,”
J. Am. Chem. Soc.
133
,
20476
(
2011
).
10.
L. D.
Zhao
,
B. P.
Zhang
,
W. S.
Liu
,
H. L.
Zhang
, and
J. F.
Li
, “
Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering
,”
J. Solid State Chem.
181
,
3278
(
2008
).
11.
Q.
Tan
,
L. D.
Zhao
,
J. F.
Li
,
C. F.
Wu
,
T. R.
Wei
,
Z. B.
Xing
, and
M. G.
Kanatzidis
, “
Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS
,”
J. Mater. Chem. A
2
,
17302
(
2014
).
12.
L. D.
Zhao
,
J.
He
,
S.
Hao
,
C. I.
Wu
,
T. P.
Hogan
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence band offset engineering using CdS and ZnS
,”
J. Am. Chem. Soc.
134
,
16327
(
2012
).
13.
J. C. W.
Folmer
,
J. A.
Turner
, and
B. A.
Parkinson
, “
Photoelectrochemical characterization of several semiconducting compounds of palladium with sulfur and/or phosphorus
,”
J. Solid State Chem.
68
,
28
(
1987
).
14.
I. J.
Ferrer
,
P. D.
Chao
,
A.
Pascual
, and
C.
Sánchez
, “
An investigation on palladium sulphide (PbS) thin films as a photovoltaic material
,”
Thin Solid Films
515
,
5783
(
2007
).
15.
M.
Barawi
,
I. J.
Ferrer
,
J. R.
Ares
, and
C.
Sánchez
, “
Hydrogen evolution using palladium sulfide (PbS) nanocorals as photoanodes in aqueous solution
,”
ACS Appl. Mater. Interfaces
6
,
20544
(
2014
).
16.
L. C.
Chen
,
H.
Yu
,
H. J.
Pang
,
B. B.
Jiang
,
L.
Su
,
X.
Shi
,
L. D.
Chen
, and
X. J.
Chen
, “
Pressure-induced superconductivity in palladium sulfide
,”
J. Phys.: Condens. Matter
30
,
155703
(
2018
).
17.
L. C.
Chen
,
B. B.
Jiang
,
H.
Yu
,
H. J.
Pang
,
L.
Su
,
X.
Shi
,
L. D.
Chen
, and
X. J.
Chen
, “
Thermoelectric properties of polycrystalline material palladium sulfide
,”
RSC Adv.
8
,
13154
(
2018
).
18.
L. C.
Chen
,
H.
Yu
,
H. J.
Pang
,
B. B.
Jiang
,
L.
Su
,
X.
Shi
,
L. D.
Chen
, and
X. J.
Chen
, “
Pressure-induced enhancement of thermoelectric performance in palladium sulfide
,”
Mater. Today Phys.
5
,
64
(
2018
).
19.
J.
Callaway
, “
Model for lattice thermal conductivity at low temperatures
,”
Phys. Rev.
113
,
1046
(
1959
).
20.
D. T.
Morelli
and
J. P.
Heremans
, “
Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–V semiconductors
,”
Phys. Rev. B
66
,
195304
(
2002
).
21.
T. L.
Feng
and
X. L.
Ruan
, “
Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids
,”
Phys. Rev. B
93
,
045202
(
2016
).
22.
E. S.
Toberer
,
L. L.
Baranowski
, and
C.
Dames
, “
Advances in thermal conductivity
,”
Annu. Rev. Mater. Res.
42
,
179
(
2012
).
23.
Z. D.
Mitrović
,
Z. V.
Popović
, and
M.
Šćepanović
, “
Anharmonicity effects in nanocrystals studied by Raman scattering spectroscopy
,”
Acta Phys. Pol. B
116
,
36
(
2009
).
24.
R.
Cuscó
,
E.
Alarcón-Lladó
,
J.
Ibáñez
,
L.
Artús
,
J.
Jiménez
,
B. G.
Wang
, and
M. J.
Callahan
, “
Temperature dependence of Raman scattering in ZnO
,”
Phys. Rev. B
75
,
165202
(
2007
).
25.
N.
Domènech-Amador
,
R.
Cuscó
,
L.
Artús
,
T.
Yamaguchi
, and
Y.
Nanishi
, “
Raman scattering study of anharmonic phonon decay in InN
,”
Phys. Rev. B
83
,
245203
(
2011
).
26.
R. K.
Singh
,
S. N.
Singh
,
B. P.
Asthana
, and
C. M.
Pathak
, “
Deconvolution of Lorentzian Raman linewidth: Techniques of polynomial fitting and extrapolation
,”
J. Raman Spectrosc.
25
,
423
(
1994
).
27.
H.
Yu
,
L. C.
Chen
,
H. J.
Pang
,
X. Y.
Qin
,
P. F.
Qiu
,
X.
Shi
,
L. D.
Chen
, and
X. J.
Chen
, “
Impressive enhancement of thermoelectric performance in CuInTe2 upon compression
,”
Mater. Today Phys.
5
,
1
(
2018
).
28.
L.
Lindsay
and
D. A.
Broido
, “
Three-phonon phase space and lattice thermal conductivity in semiconductors
,”
J. Phys.: Condens. Matter
20
,
165209
(
2008
).
29.
I. P.
Ipatova
,
A. A.
Maradudin
, and
R. F.
Wallis
, “
Temperature dependence of the width of the fundamental lattice-vibration absorption peak in ionic crystals. II. approximate numerical results
,”
Phys. Rev.
155
,
882
(
1967
).
30.
X. J.
Chen
,
V. V.
Struzhkin
,
S.
Kung
,
H. K.
Mao
,
R. J.
Hemley
, and
A. N.
Christensen
, “
Pressure-induced phonon frequency shifts in transition-metal nitrides
,”
Phys. Rev. B
70
,
014501
(
2004
).
31.
D.
Bansal
,
J. W.
Hong
,
C. W.
Li
,
A. F.
May
,
W.
Porter
,
M. Y.
Hu
,
D. L.
Abernathy
, and
O.
Delaire
, “
Phonon anharmonicity and negative thermal expansion in SnSe
,”
Phys. Rev. B
94
,
054307
(
2016
).
32.
A.
Taube
,
J.
Judek
,
C.
Jastrzȩbski
,
A.
Duzynska
,
K.
Switkowski
, and
M.
Zdrojek
, “
Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer
,”
ACS Appl. Mater. Interfaces
6
,
8959
(
2014
).
33.
P. G.
Klemens
, “
Anharmonic decay of optical phonons
,”
Phys. Rev.
148
,
845
(
1966
).
34.
T. R.
Hart
,
R. L.
Aggarwal
, and
B.
Lax
, “
Temperature dependence of Raman scattering in silicon
,”
Phys. Rev. B
1
,
638
(
1970
).
35.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
, “
Anharmonic effects in light scattering due to optical phonons in silicon
,”
Phys. Rev. B
28
,
1928
(
1983
).
36.
A. M.
Hofmeister
, “
Pressure dependence of thermal transport properties
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
9192
(
2007
).
37.
B. C.
Sales
,
D.
Mandrus
, and
R. K.
Williams
, “
Filled skutterudite antimonides: A new class of thermoelectric materials
,”
Science
272
,
1325
(
1996
).
38.
L. P.
Hu
,
T. J.
Zhu
,
X. H.
Liu
, and
X. B.
Zhao
, “
Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials
,”
Adv. Funct. Mater.
24
,
5211
(
2014
).
39.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
, “
Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states
,”
Science
321
,
554
(
2008
).
40.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C. I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
High-performance bulk thermoelectrics with all-scale hierarchical architectures
,”
Nature (London)
489
,
414
(
2012
).
You do not currently have access to this content.