We report the electrical properties of 60° dislocations originating from the +1.2% lattice mismatch between an unintentionally doped, 315 nm thick Ge0.922Sn0.078 layer (58% relaxed) and the underlying Ge substrate, using deep level transient spectroscopy. The 60° dislocations are found to be split into Shockley partials, binding a stacking fault. The dislocations exhibit a band-like distribution of electronic states in the bandgap, with the highest occupied defect state at ∼EV + 0.15 eV, indicating no interaction with point defects in the dislocation's strain field. A small capture cross-section of 1.5 × 10−19 cm2 with a capture barrier of 60 meV is observed, indicating a donor-like nature of the defect-states. Thus, these dislocation-states are not the source of unintentional p-type doping in the Ge0.922Sn0.078 layer. Importantly, we show that the resolved 60° dislocation-states act as a source of leakage current by thermally generating minority electrons via the Shockley-Read-Hall mechanism.

1.
J.
Kouvetakis
,
J.
Menendez
, and
A.
Chizmeshya
,
Annu. Rev. Mater. Res.
36
,
497
(
2006
).
2.
S.
Zaima
,
O.
Nakatsuka
,
N.
Taoka
,
M.
Kurosawa
,
W.
Takeuchi
, and
M.
Sakashita
,
Sci. Technol. Adv. Mater.
16
,
043502
(
2015
).
3.
R.
Loo
,
B.
Vincent
,
F.
Gencarelli
,
C.
Merckling
,
A.
Kumar
,
G.
Eneman
,
L.
Witters
,
W.
Vandervorst
,
M.
Caymax
,
M.
Heyns
, and
A.
Thean
,
ECS J. Solid State Sci. Technol.
2
,
N35
(
2013
).
4.
G.
Eneman
,
D.
Brunco
,
L.
Witters
,
B.
Vincent
,
P.
Favia
,
A.
Hikavyy
,
A.
De Keersgieter
,
J.
Mitard
,
R.
Loo
,
A.
Veloso
,
O.
Richard
,
H.
Bender
,
S.
Lee
,
M.
Van Dal
,
N.
Kabir
,
W.
Vandervorst
,
M.
Caymax
,
N.
Horiguchi
,
N.
Collaert
, and
A.
Thean
, in
IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2012
), pp.
5
6
.
5.
S.
Wirths
,
R.
Geiger
,
N.
Von Den Driesch
,
G.
Mussler
,
T.
Stoica
,
S.
Mantl
,
Z.
Ikonic
,
M.
Luysberg
,
S.
Chiussi
,
J.
Hartmann
,
H.
Sigg
,
J.
Faist
,
D.
Buca
, and
D.
Grützmacher
,
Nat. Photonics
9
,
88
(
2015
).
6.
Y.
Shimura
,
S. A.
Srinivasan
, and
R.
Loo
,
ECS J. Solid State Sci. Technol.
5
,
Q140
(
2016
).
7.
C.
Schulte-Braucks
,
R.
Pandey
,
R. N.
Sajjad
,
M.
Barth
,
R. K.
Ghosh
,
B.
Grisafe
,
P.
Sharma
,
N.
von den Driesch
,
A.
Vohra
,
G. B.
Rayner
,
R.
Loo
,
S.
Mantl
,
D.
Buca
,
C.-C.
Yeh
,
C.-H.
Wu
,
W.
Tsai
,
D. A.
Antoniadis
, and
S.
Datta
,
IEEE Trans. Electron Devices
64
,
4354
(
2017
).
8.
S.
Assali
,
A.
Dijkstra
,
A.
Li
,
S.
Koelling
,
M.
Verheijen
,
L.
Gagliano
,
N.
von den Driesch
,
D.
Buca
,
P.
Koenraad
,
J.
Haverkort
, and
E. P. A. M.
Bakkers
,
Nano Lett.
17
,
1538
(
2017
).
9.
F.
Gencarelli
, “
Epitaxial growth of GeSn compounds for advanced CMOS and photonics applications
,” Ph.D. thesis, KU Leuven,
2015
.
10.
M.
Reiche
,
M.
Kittler
,
H.
Übensee
,
M.
Krause
, and
E.
Pippel
,
Jpn. J. Appl. Phys., Part 1
53
,
04EC03
(
2014
).
11.
P.
Petroff
,
R.
Logan
, and
A.
Savage
,
J. Microsc.
118
,
255
(
1980
).
12.
D. B.
Holt
and
B. G.
Yacobi
,
Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures
(
Cambridge University Press
,
2007
).
13.
P.
Blood
and
J. W.
Orton
,
The Electrical Characterization of Semiconductors: Majority Carriers and Electron States
(
Academic Press
,
1992
), Vol.
2
.
14.
P.
Grillot
,
S.
Ringel
,
E.
Fitzgerald
,
G.
Watson
, and
Y.
Xie
,
J. Appl. Phys.
77
,
3248
(
1995
).
15.
P.
Omling
,
E.
Weber
,
L.
Montelius
,
H.
Alexander
, and
J.
Michel
,
Phys. Rev. B
32
,
6571
(
1985
).
16.
W.
Schröter
,
J.
Kronewitz
,
U.
Gnauert
,
F.
Riedel
, and
M.
Seibt
,
Phys. Rev. B
52
,
13726
(
1995
).
17.
W.
Schröter
,
H.
Hedemann
,
V.
Kveder
, and
F.
Riedel
,
J. Phys.: Condens. Matter
14
,
13047
(
2002
).
18.
O.
Vyvenko
,
M.
Kittler
,
W.
Seifert
, and
M.
Trushin
,
Phys. Status Solidi (c)
2
,
1852
(
2005
).
19.
M.-Y.
Ryu
,
Y.
Yeo
,
M.
Ahoujja
,
T.
Harris
,
R.
Beeler
, and
J.
Kouvetakis
,
Appl. Phys. Lett.
101
,
131110
(
2012
).
20.
W.
Takeuchi
,
T.
Asano
,
Y.
Inuzuka
,
M.
Sakashita
,
O.
Nakatsuka
, and
S.
Zaima
,
ECS J. Solid State Sci. Technol.
5
,
P3082
(
2016
).
22.
T.
Roesener
,
V.
Klinger
,
C.
Weuffen
,
D.
Lackner
, and
F.
Dimroth
,
J. Cryst. Growth
368
,
21
(
2013
).
23.
Y. B.
Bolkhovityanov
,
A.
Deryabin
,
A.
Gutakovskii
, and
L.
Sokolov
,
Acta Mater.
61
,
617
(
2013
).
24.
J.
Narayan
and
S.
Oktyabrsky
,
J. Appl. Phys.
92
,
7122
(
2002
).
25.
M.
Oehme
,
K.
Kostecki
,
K.
Ye
,
S.
Bechler
,
K.
Ulbricht
,
M.
Schmid
,
M.
Kaschel
,
M.
Gollhofer
,
R.
Körner
,
W.
Zhang
 et al.,
Opt. Express
22
,
839
(
2014
).
26.
V.
Afanas'ev
,
C.
Schulte-Braucks
,
S.
Wirths
,
J.
Schubert
, and
D.
Buca
,
Microelectron. Eng.
178
,
141
(
2017
).
27.
C.
Schulte-Braucks
,
D.
Stange
,
N.
Von Den Driesch
,
S.
Blaeser
,
Z.
Ikonic
,
J.
Hartmann
,
S.
Mantl
, and
D.
Buca
,
Appl. Phys. Lett.
107
,
042101
(
2015
).
28.
J.
Lauwaert
,
J.
Van Gheluwe
, and
P.
Clauws
,
Rev. Sci. Instrum.
79
,
093902
(
2008
).
29.
J.
Slotte
,
F.
Tuomisto
,
J.
Kujala
,
A. M.
Holm
,
N.
Segercrantz
,
S.
Kilpeläinen
,
K.
Kuitunen
,
E.
Simoen
,
F.
Gencarelli
,
R.
Loo
, and
Y.
Shimura
,
ECS Trans.
64
,
241
(
2014
).
30.
E.
Simoen
,
P.
Clauws
, and
J.
Vennik
,
J. Phys. D: Appl. Phys.
18
,
2041
(
1985
).
You do not currently have access to this content.