Thermoelectric performance of SnTe has been found to enhance with isovalent doping of alkaline and transition metal elements where most of these elements have a solubility of less than 13%. We propose a strategy of doping rare earth element Yb to enhance the thermoelectric performance of SnTe. With heavy atomic mass and strong spin-orbit coupling, even the mild doping of Yb (∼5%) is enough to create a degeneracy via band-convergence which enhances the density of states near the Fermi level and improves the overall performance. Our transport data and first-principles calculations corroborate that nearly 5% Yb is an efficient dopant to achieve thermoelectric response which is equivalent to 9% of Mn doping. The results are useful for understanding the environmentally friendly thermoelectric SnTe.

1.
A.
Banik
and
K.
Biswas
,
J. Mater. Chem. A
2
(
25
),
9620
9625
(
2014
).
2.
A.
Banik
,
U. S.
Shenoy
,
S.
Anand
,
U. V.
Waghmare
, and
K.
Biswas
,
Chem. Mater.
27
(
2
),
581
587
(
2015
).
3.
S.
Acharya
,
S.
Anwar
,
T.
Mori
, and
A.
Soni
,
J. Mater. Chem. C
6
(
24
),
6489
6493
(
2018
).
4.
S.
Acharya
and
A.
Soni
,
AIP Conf. Proc.
1832
(
1
),
110028
(
2017
).
5.
S.
Acharya
,
J.
Pandey
, and
A.
Soni
,
Appl. Phys. Lett.
109
(
13
),
133904
(
2016
).
6.
G. A.
Slack
and
D. M.
Rowe
,
CRC Handbook of Thermoelectrics
(
CRC Press
,
1995
).
7.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
CRC/Taylor & Francis
,
2005
).
8.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
(
2
),
105
114
(
2008
).
9.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
(
7345
),
66
69
(
2011
).
10.
L. M.
Rogers
,
J. Phys. D-Appl. Phys.
1
(
7
),
845
852
(
1968
).
11.
R. F.
Brebrick
and
A. J.
Strauss
,
Phys. Rev.
131
(
1
),
104
110
(
1963
).
12.
R. F.
Brebrick
,
J. Phys. Chem. Solids
24
(
1
),
27
36
(
1963
).
13.
G.
Tan
,
L.-D.
Zhao
,
F.
Shi
,
J. W.
Doak
,
S.-H.
Lo
,
H.
Sun
,
C.
Wolverton
,
V. P.
Dravid
,
C.
Uher
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
136
(
19
),
7006
7017
(
2014
).
14.
G.
Tan
,
F.
Shi
,
J. W.
Doak
,
H.
Sun
,
L.-D.
Zhao
,
P.
Wang
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
8
(
1
),
267
277
(
2015
).
15.
R.
Al Rahal Al Orabi
,
N. A.
Mecholsky
,
J.
Hwang
,
W.
Kim
,
J.-S.
Rhyee
,
D.
Wee
, and
M.
Fornari
,
Chem. Mater.
28
(
1
),
376
384
(
2016
).
16.
H.
Wu
,
C.
Chang
,
D.
Feng
,
Y.
Xiao
,
X.
Zhang
,
Y.
Pei
,
L.
Zheng
,
D.
Wu
,
S.
Gong
,
Y.
Chen
,
J.
He
,
M. G.
Kanatzidis
, and
L.-D.
Zhao
,
Energy Environ. Sci.
8
(
11
),
3298
3312
(
2015
).
17.
J.
He
,
X.
Tan
,
J.
Xu
,
G.-Q.
Liu
,
H.
Shao
,
Y.
Fu
,
X.
Wang
,
Z.
Liu
,
J.
Xu
,
H.
Jiang
, and
J.
Jiang
,
J. Mater. Chem. A
3
(
39
),
19974
19979
(
2015
).
18.
Q.
Zhang
,
B.
Liao
,
Y.
Lan
,
K.
Lukas
,
W.
Liu
,
K.
Esfarjani
,
C.
Opeil
,
D.
Broido
,
G.
Chen
, and
Z.
Ren
,
Proc. Natl. Acad. Sci.
110
(
33
),
13261
13266
(
2013
).
19.
M.
Zhou
,
Z. M.
Gibbs
,
H.
Wang
,
Y.
Han
,
L.
Li
, and
G.
Jeffrey Snyder
,
Appl. Phys. Lett.
109
(
4
),
042102
(
2016
).
20.
D. K.
Bhat
and
S.
Shenoy U
,
J. Phys. Chem. C
121
(
13
),
7123
7130
(
2017
).
21.
M.
Zhou
,
Z. M.
Gibbs
,
H.
Wang
,
Y.
Han
,
C.
Xin
,
L.
Li
, and
G. J.
Snyder
,
Phys. Chem. Chem. Phys.
16
(
38
),
20741
20748
(
2014
).
22.
L.
Zhang
,
J.
Wang
,
Z.
Cheng
,
Q.
Sun
,
Z.
Li
, and
S.
Dou
,
J. Mater. Chem. A
4
(
20
),
7936
7942
(
2016
).
23.
A.
Banik
,
B.
Vishal
,
S.
Perumal
,
R.
Datta
, and
K.
Biswas
,
Energy Environ. Sci.
9
(
6
),
2011
2019
(
2016
).
24.
L.-D.
Zhao
,
X.
Zhang
,
H.
Wu
,
G.
Tan
,
Y.
Pei
,
Y.
Xiao
,
C.
Chang
,
D.
Wu
,
H.
Chi
,
L.
Zheng
,
S.
Gong
,
C.
Uher
,
J.
He
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
138
(
7
),
2366
2373
(
2016
).
25.
W.
Li
,
Z.
Chen
,
S.
Lin
,
Y.
Chang
,
B.
Ge
,
Y.
Chen
, and
Y.
Pei
,
J. Materiomics
1
(
4
),
307
315
(
2015
).
26.
E. M.
Levin
,
B. A.
Cook
,
J. L.
Harringa
,
S. L.
Bud'ko
,
R.
Venkatasubramanian
, and
K.
Schmidt-Rohr
,
Adv. Funct. Mater.
21
(
3
),
441
447
(
2011
).
27.
Z.
Liu
,
Y.
Zhang
,
J.
Mao
,
W.
Gao
,
Y.
Wang
,
J.
Shuai
,
W.
Cai
,
J.
Sui
, and
Z.
Ren
,
Acta Mater.
128
,
227
234
(
2017
).
28.
Z.
Jian
,
Z.
Chen
,
W.
Li
,
J.
Yang
,
W.
Zhang
, and
Y.
Pei
,
J. Mater. Chem. C
3
(
48
),
12410
12417
(
2015
).
29.
H. J.
van Daal
,
P. B.
van Aken
, and
K. H. J.
Buschow
,
Phys. Lett. A
49
(
3
),
246
248
(
1974
).
30.
Z. S.
Aliev
,
G. I.
Ibadova
,
J.-C.
Tedenac
, and
M. B.
Babanly
,
J. Alloys Compd.
602
,
248
254
(
2014
).
31.
O. M.
Aliev
,
N. R.
Akhmedova
,
V. M.
Ragimova
,
D. S.
Azhdarova
, and
E. A.
Bakhshalieva
,
Russ. J. Inorg. Chem.
54
(
11
),
1830
(
2009
).
32.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
33.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
34.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
35.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
36.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
37.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
39.
F.
Tran
and
P.
Blaha
,
J. Phys. Chem. A
121
(
17
),
3318
3325
(
2017
).
You do not currently have access to this content.