Subsurface imaging capability of liquid-environment higher-harmonic atomic force microscopy (AFM) was investigated using a reference artifact. A series of cylindrical cavities with pre-known dimensions were fabricated on a silicon substrate via electron beam lithography and then covered by a set of highly oriented pyrolytic graphite (HOPG) pieces with different thicknesses. Experiments on these structures demonstrated that the higher-harmonic amplitude sensitivity to the local stiffness in liquids was at least an order of magnitude larger than that in ambient air under the same parameter settings. The harmonic AFM in liquids could detect the cavities beneath over a 200 nm thick HOPG cover. Theoretical analyses based on the cantilever dynamics and the membrane mechanical properties well interpreted the experimental results. Furthermore, it was verified that the momentary excitation of the non-driven higher eigenmode in a low-Q environment could play a critical role in the enhanced subsurface imaging capability of harmonic AFM in liquids.

1.
M.
Soliman
,
Y.
Ding
, and
L.
Tetard
,
J. Phys.: Condens. Matter
29
,
173001
(
2017
).
2.
D.
Ebeling
,
B.
Eslami
, and
S. D. J.
Solares
,
ACS Nano
7
,
10387
10396
(
2013
).
3.
A. P.
Perrino
,
Y. K.
Ryu
,
C. A.
Amo
,
M. P.
Morales
, and
R.
Garcia
,
Nanotechnology
27
,
275703
(
2016
).
4.
G. S.
Shekhawat
and
V. P.
Dravid
,
Science
310
,
89
92
(
2005
).
5.
G.
Shekhawat
,
A.
Srivastava
,
S.
Avasthy
, and
V.
Dravid
,
Appl. Phys. Lett.
95
,
263101
(
2009
).
6.
S.
Hu
,
C.
Su
, and
W.
Arnold
,
J. Appl. Phys.
109
,
084324
(
2011
).
7.
A.
Striegler
,
B.
Koehler
,
B.
Bendjus
,
M.
Roellig
,
M.
Kopycinska-Mueller
, and
N.
Meyendorf
,
Ultramicroscopy
111
,
1405
1416
(
2011
).
8.
K.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Ultramicroscopy
133
,
41
49
(
2013
).
9.
H. J.
Sharahi
,
G.
Shekhawat
,
V.
Dravid
,
S.
Park
,
P.
Egberts
, and
S.
Kim
,
Nanoscale
9
,
2330
2339
(
2017
).
10.
F.
Dinelli
,
P.
Pingue
,
N. D.
Kay
, and
O. V.
Kolosov
,
Nanotechnology
28
,
085706
(
2017
).
11.
L.
Tetard
,
A.
Passian
, and
T.
Thundat
,
Nat. Nanotechnol.
5
,
105
109
(
2010
).
12.
P.
Vitry
,
E.
Bourillot
,
C.
Plassard
,
Y.
Lacroute
,
L.
Tetard
, and
E.
Lesniewska
,
Appl. Phys. Lett.
105
,
053110
(
2014
).
13.
Z.
Parlak
and
F. L.
Degertekin
,
J. Appl. Phys.
103
,
114910
(
2008
).
14.
J. P.
Killgore
,
J. Y.
Kelly
,
C. M.
Stafford
,
M. J.
Fasolka
, and
D. C.
Hurley
,
Nanotechnology
22
,
175706
(
2011
).
15.
K.
Kimura
,
K.
Kobayashi
,
A.
Yao
, and
H.
Yamada
,
Nanotechnology
27
,
415707
(
2016
).
16.
C.
Ma
,
Y.
Chen
,
W.
Arnold
, and
J.
Chu
,
J. Appl. Phys.
121
,
154301
(
2017
).
17.
M. J.
Cadena
,
Y.
Chen
,
R. G.
Reifenberger
, and
A.
Raman
,
Appl. Phys. Lett.
110
,
123108
(
2017
).
18.
O.
Sahin
,
C. F.
Quate
,
O.
Solgaard
, and
A.
Atalar
,
Phys. Rev. B
69
,
165416
(
2004
).
19.
X.
Xu
,
J.
Melcher
,
S.
Basak
,
R.
Reifenberger
, and
A.
Raman
,
Phys. Rev. Lett.
102
,
060801
(
2009
).
20.
W.
Zhang
,
Y.
Chen
,
X.
Xia
, and
J.
Chu
,
Beilstein J. Nanotechnol.
8
,
2771
2780
(
2017
).
21.
E.
Spitzner
,
C.
Riesch
, and
R.
Magerle
,
ACS Nano
5
,
315
320
(
2011
).
22.
S.
Basak
and
A.
Raman
,
Appl. Phys. Lett.
91
,
064107
(
2007
).
23.
C.
Ma
,
Y.
Chen
,
J.
Chen
, and
J.
Chu
,
Appl. Phys. Express
9
,
116601
(
2016
).
24.
D.
Forchheimer
,
R.
Forchheimer
, and
D. B.
Haviland
,
Nat. Commun.
6
,
6270
(
2015
).
25.
R.
Garcia
and
E. T.
Herruzo
,
Nat. Nanotechnol.
7
,
217
226
(
2012
).

Supplementary Material

You do not currently have access to this content.