Néel-type magnetic skyrmions in multilayer films have recently attracted significant attention due to their stability at room temperature and low threshold for current-driven motion, offering the potential for the construction of high-speed and high-density spintronic devices. However, to date, research studies reported in the literature have rarely examined the effect of temperature on the formation and behavior of Néel-type skyrmions. Here, we investigate the effect of the temperature on the creation of a skyrmion lattice in [Pt/Co/Ta]10 multilayer samples, using in-situ Lorentz transmission electron microscopy. By imaging the magnetization reversal process from a positive (negative) to a negative (positive) saturation, we find that the skyrmions can be created by nucleation from a ferromagnetic state and by breaking the labyrinth domains under certain external fields. More importantly, we demonstrate that the density of skyrmions in the multilayers not only depend on the external magnetic field, but also depend on the temperature and the thermal history of the materials.

1.
I.
Dzyaloshinsky
,
J. Phys. Chem. Solids
4
(
4
),
241
255
(
1958
).
2.
3.
N.
Nagaosa
and
Y.
Tokura
,
Nat. Nanotechnol.
8
(
12
),
899
911
(
2013
).
4.
A.
Fert
,
N.
Reyren
, and
V.
Cros
,
Nat. Rev. Mater.
2
,
17031
(
2017
).
5.
W.
Jiang
,
G.
Chen
,
K.
Liu
,
J.
Zang
,
S. G.
te Velthuis
, and
A.
Hoffmann
,
Phys. Rep.
704
,
1
(
2017
).
6.
A.
Fert
,
V.
Cros
, and
J.
Sampaio
,
Nat. Nanotechnol.
8
(
3
),
152
156
(
2013
).
7.
R.
Tomasello
,
E.
Martinez
,
R.
Zivieri
,
L.
Torres
,
M.
Carpentieri
, and
G.
Finocchio
,
Sci. Rep.
4
,
6784
(
2014
).
8.
G.
Yu
,
P.
Upadhyaya
,
Q.
Shao
,
H.
Wu
,
G.
Yin
,
X.
Li
,
C.
He
,
W.
Jiang
,
X.
Han
, and
P. K.
Amiri
,
Nano Lett.
17
,
261
(
2016
).
9.
X.
Zhang
,
M.
Ezawa
, and
Y.
Zhou
,
Sci. Rep.
5
,
9400
(
2015
).
10.
H.
Xia
,
C.
Jin
,
C.
Song
,
J.
Wang
,
J.
Wang
, and
Q.
Liu
,
J. Phys. D
50
(
50
),
505005
(
2017
).
11.
S.
Zhang
,
J.
Wang
,
Q.
Zheng
,
Q.
Zhu
,
X.
Liu
,
S.
Chen
,
C.
Jin
,
Q.
Liu
,
C.
Jia
, and
D.
Xue
,
New J. Phys.
17
(
2
),
023061
(
2015
).
12.
F.
Garcia-Sanchez
,
J.
Sampaio
,
N.
Reyren
,
V.
Cros
, and
J.
Kim
,
New J. Phys.
18
(
7
),
075011
(
2016
).
13.
S.
Grigoriev
,
V.
Dyadkin
,
E.
Moskvin
,
D.
Lamago
,
T.
Wolf
,
H.
Eckerlebe
, and
S.
Maleyev
,
Phys. Rev. B
79
(
14
),
144417
(
2009
).
14.
C.
Pappas
,
E.
Lelievre-Berna
,
P.
Falus
,
P.
Bentley
,
E.
Moskvin
,
S.
Grigoriev
,
P.
Fouquet
, and
B.
Farago
,
Phys. Rev. Lett.
102
(
19
),
197202
(
2009
).
15.
F.
Jonietz
,
S.
Mühlbauer
,
C.
Pfleiderer
,
A.
Neubauer
,
W.
Münzer
,
A.
Bauer
,
T.
Adams
,
R.
Georgii
,
P.
Böni
, and
R.
Duine
,
Science
330
(
6011
),
1648
1651
(
2010
).
16.
W.
Münzer
,
A.
Neubauer
,
T.
Adams
,
S.
Mühlbauer
,
C.
Franz
,
F.
Jonietz
,
R.
Georgii
,
P.
Böni
,
B.
Pedersen
, and
M.
Schmidt
,
Phys. Rev. B
81
(
4
),
041203
(
2010
).
17.
X.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J.
Park
,
J.
Han
,
Y.
Matsui
,
N.
Nagaosa
, and
Y.
Tokura
,
Nature
465
(
7300
),
901
904
(
2010
).
18.
N.
Kanazawa
,
Y.
Onose
,
T.
Arima
,
D.
Okuyama
,
K.
Ohoyama
,
S.
Wakimoto
,
K.
Kakurai
,
S.
Ishiwata
, and
Y.
Tokura
,
Phys. Rev. Lett.
106
(
15
),
156603
(
2011
).
19.
X.
Yu
,
N.
Kanazawa
,
Y.
Onose
,
K.
Kimoto
,
W.
Zhang
,
S.
Ishiwata
,
Y.
Matsui
, and
Y.
Tokura
,
Nat. Mater.
10
(
2
),
106
109
(
2011
).
20.
A.
Tonomura
,
X.
Yu
,
K.
Yanagisawa
,
T.
Matsuda
,
Y.
Onose
,
N.
Kanazawa
,
H. S.
Park
, and
Y.
Tokura
,
Nano Lett.
12
(
3
),
1673
1677
(
2012
).
21.
X.
Yu
,
N.
Kanazawa
,
W.
Zhang
,
T.
Nagai
,
T.
Hara
,
K.
Kimoto
,
Y.
Matsui
,
Y.
Onose
, and
Y.
Tokura
,
Nat. Commun.
3
,
988
(
2012
).
22.
P.
Milde
,
D.
Köhler
,
J.
Seidel
,
L.
Eng
,
A.
Bauer
,
A.
Chacon
,
J.
Kindervater
,
S.
Mühlbauer
,
C.
Pfleiderer
, and
S.
Buhrandt
,
Science
340
(
6136
),
1076
1080
(
2013
).
23.
K.
Shibata
,
X.
Yu
,
T.
Hara
,
D.
Morikawa
,
N.
Kanazawa
,
K.
Kimoto
,
S.
Ishiwata
,
Y.
Matsui
, and
Y.
Tokura
,
Nat. Nanotechnol.
8
(
10
),
723
728
(
2013
).
24.
H. S.
Park
,
X.
Yu
,
S.
Aizawa
,
T.
Tanigaki
,
T.
Akashi
,
Y.
Takahashi
,
T.
Matsuda
,
N.
Kanazawa
,
Y.
Onose
, and
D.
Shindo
,
Nat. Nanotechnol.
9
(
5
),
337
342
(
2014
).
25.
A.
Schlenhoff
,
P.
Lindner
,
J.
Friedlein
,
S.
Krause
,
R.
Wiesendanger
,
M.
Weinl
,
M.
Schreck
, and
M.
Albrecht
,
ACS Nano
9
(
6
),
5908
5912
(
2015
).
26.
O.
Boulle
,
J.
Vogel
,
H.
Yang
,
S.
Pizzini
,
D.
de Souza Chaves
,
A.
Locatelli
,
T. O.
Menteş
,
A.
Sala
,
L. D.
Buda-Prejbeanu
, and
O.
Klein
,
Nat. Nanotechnol.
11
(
5
),
449
454
(
2016
).
27.
C.
Moreau-Luchaire
,
C.
Moutafis
,
N.
Reyren
,
J.
Sampaio
,
C.
Vaz
,
N.
Van Horne
,
K.
Bouzehouane
,
K.
Garcia
,
C.
Deranlot
, and
P.
Warnicke
,
Nat. Nanotechnol.
11
(
5
),
444
448
(
2016
).
28.
J. F.
Pulecio
,
A.
Hrabec
,
K.
Zeissler
,
R. M.
White
,
Y.
Zhu
, and
C. H.
Marrows
, “
Hedgehog skyrmion bubbles in ultrathin films with interfacial Dzyaloshinskii-Moriya interactions
,” preprint arXiv:1611.06869 (
2016
).
29.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
, and
M.
Weigand
,
Nat. Mater.
15
(
5
),
501
506
(
2016
).
30.
G.
Yu
,
P.
Upadhyaya
,
X.
Li
,
W.
Li
,
S. K.
Kim
,
Y.
Fan
,
K. L.
Wong
,
Y.
Tserkovnyak
,
P. K.
Amiri
, and
K. L.
Wang
,
Nano Lett.
16
(
3
),
1981
1988
(
2016
).
31.
W.
Legrand
,
D.
Maccariello
,
N.
Reyren
,
K.
Garcia
,
C.
Moutafis
,
C.
Moreau-Luchaire
,
S.
Collin
,
K.
Bouzehouane
,
V.
Cros
, and
A.
Fert
,
Nano Lett.
17
(
4
),
2703
2712
(
2017
).
32.
S. D.
Pollard
,
J. A.
Garlow
,
J.
Yu
,
Z.
Wang
,
Y.
Zhu
, and
H.
Yang
,
Nat. Commun.
8
,
14761
(
2017
).
33.
A.
Soumyanarayanan
,
M.
Raju
,
A. L.
Gonzalez Oyarce
,
A. K. C.
Tan
,
M.-Y.
Im
,
A. P.
Petrovic
,
P.
Ho
,
K. H.
Khoo
,
M.
Tran
,
C. K.
Gan
,
F.
Ernult
, and
C.
Panagopoulos
,
Nat. Mater.
16
(
9
),
898
904
(
2017
).
34.
F.
Tejo
,
A.
Riveros
,
J.
Escrig
,
K.
Guslienko
, and
O.
Chubykalo-Fesenko
,
Sci. Rep.
8
(
1
),
6280
(
2018
).
35.
W.
Jiang
,
P.
Upadhyaya
,
W.
Zhang
,
G.
Yu
,
M. B.
Jungfleisch
,
F. Y.
Fradin
,
J. E.
Pearson
,
Y.
Tserkovnyak
,
K. L.
Wang
, and
O.
Heinonen
,
Science
349
(
6245
),
283
286
(
2015
).
36.
M.
He
,
G.
Li
,
Z.
Zhu
,
Y.
Zhang
,
L.
Peng
,
R.
Li
,
J.
Li
,
H.
Wei
,
T.
Zhao
, and
X.-G.
Zhang
,
Phys. Rev. B
97
(
17
),
174419
(
2018
).
37.
M.
He
,
L.
Peng
,
Z.
Zhu
,
G.
Li
,
J.
Cai
,
J.
Li
,
H.
Wei
,
L.
Gu
,
S.
Wang
, and
T.
Zhao
,
Appl. Phys. Lett.
111
(
20
),
202403
(
2017
).
38.
S.
Zhang
,
J.
Zhang
,
Y.
Wen
,
E. M.
Chudnovsky
, and
X.
Zhang
,
Commun. Phys.
1
(
1
),
36
(
2018
).
39.
S.
Zhang
,
J.
Zhang
,
Q.
Zhang
,
C.
Barton
,
V.
Neu
,
Y.
Zhao
,
Z.
Hou
,
Y.
Wen
,
C.
Gong
, and
O.
Kazakova
,
Appl. Phys. Lett.
112
(
13
),
132405
(
2018
).
40.
S.
Rohart
and
A.
Thiaville
,
Phys. Rev. B
88
(
18
),
184422
(
2013
).
41.
L.
Rózsa
,
U.
Atxitia
, and
U.
Nowak
,
Phys. Rev. B
96
(
9
),
094436
(
2017
).
42.
U.
Atxitia
,
D.
Hinzke
,
O.
Chubykalo-Fesenko
,
U.
Nowak
,
H.
Kachkachi
,
O. N.
Mryasov
,
R.
Evans
, and
R. W.
Chantrell
,
Phys. Rev. B
82
(
13
),
134440
(
2010
).
43.
R.
Tomasello
,
K.
Guslienko
,
M.
Ricci
,
A.
Giordano
,
J.
Barker
,
M.
Carpentieri
,
O.
Chubykalo-Fesenko
, and
G.
Finocchio
,
Phys. Rev. B
97
(
6
),
060402
(
2018
).
44.
O. N.
Mryasov
,
U.
Nowak
,
K. Y.
Guslienko
, and
R. W.
Chantrell
,
EPL
69
(
5
),
805
(
2005
).
45.
K.
Zakeri
,
T.
Kebe
,
J.
Lindner
, and
M.
Farle
,
Phys. Rev. B
73
(
5
),
052405
(
2006
).
46.
Y.
Fu
,
I.
Barsukov
,
R.
Meckenstock
,
J.
Lindner
,
Y.
Zhai
,
B.
Hjörvarsson
, and
M.
Farle
,
J. Appl. Phys.
115
(
17
),
172605
(
2014
).
47.
Y.
Fu
,
I.
Barsukov
,
J.
Li
,
A.
Gonçalves
,
C.
Kuo
,
M.
Farle
, and
I.
Krivorotov
,
Appl. Phys. Lett.
108
(
14
),
142403
(
2016
).
48.
P.
Asselin
,
R. F. L.
Evans
,
J.
Barker
,
R. W.
Chantrell
,
R.
Yanes
,
O.
Chubykalo-Fesenko
,
D.
Hinzke
, and
U.
Nowak
,
Phys. Rev. B
82
(
5
),
054415
(
2010
).
49.
T.
Meier
,
M.
Kronseder
, and
C.
Back
,
Phys. Rev. B
96
(
14
),
144408
(
2017
).

Supplementary Material

You do not currently have access to this content.