The experimental island shapes of III–V islands grown on silicon (001) in the Volmer-Weber growth mode are analyzed in the frame of the theory of wetting in crystals. A reverse Wulff-Kaishew (or Winterbottom) construction is used in order to access interfacial energy. We apply this approach to AlSb and GaSb islands on (001) Si grown by molecular beam epitaxy and observed by scanning transmission electron microscopy. Experimental ratios between energies of (001), (110), (111)A, and (111)B surfaces are established. Interface energies are then quantitatively estimated for GaSb/Si and AlSb/Si interfaces. The differences in the shape of GaSb and AlSb islands, which are consistently reported in the literature, can be clearly attributed to a higher energy for the GaSb/Si interface compared to the ASb/Si one and not to different adatom diffusion lengths. The difference in interface energies is quantified, and its origin at the microscopic level is discussed.

1.
E.
Tournié
,
J. B.
Rodriguez
,
L.
Cerutti
,
H. Y.
Liu
,
J.
Wu
, and
S. M.
Chen
,
MRS Bull.
41
(
3
),
218
(
2016
).
2.
M.
Borg
,
H.
Schmid
,
K. E.
Moselund
,
G.
Signorello
,
L.
Gignac
,
J.
Bruley
,
C.
Breslin
,
P.
Das Kanungo
,
P.
Werner
, and
H.
Riel
,
Nano Lett.
14
,
1914
(
2014
).
3.
See,
I.
Lucci
,
S.
Charbonnier
,
L.
Pedesseau
,
M.
Vallet
,
L.
Cerutti
,
J.-B.
Rodriguez
,
E.
Tournié
,
R.
Bernard
,
A.
Létoublon
,
N.
Bertru
,
A.
Le Corre
,
S.
Rennesson
,
F.
Semond
,
G.
Patriarche
,
L.
Largeau
,
P.
Turban
,
A.
Ponchet
, and
C.
Cornet
,
Phys. Rev. Mater.
2
,
060401(R)
(
2018
); References therein.
4.
K.
Akahane
,
N.
Yamamoto
,
S.
Gozu
,
A.
Ueta
, and
N.
Ohtani
,
J. Cryst. Growth
283
,
297
(
2005
).
5.
Y. H.
Kim
,
Y. K.
Noh
,
M. D.
Kim
,
J. E.
Oh
, and
K. S.
Chung
,
Thin Solid Films
518
,
2280
(
2010
).
6.
S. H.
Vajargah
,
S.
Ghanad-Tavakoli
,
J. S.
Preston
,
R. N.
Kleiman
, and
G. A.
Botton
,
J. Appl. Phys.
114
,
113101
(
2013
).
7.
J. B.
Rodriguez
,
L.
Cerutti
,
G.
Patriarche
,
L.
Largeau
,
K.
Madiomanana
, and
E.
Tournié
,
J. Cryst. Growth
477
,
65
(
2017
).
8.
M.
Wolmer
and
A.
Weber
,
Z. Phys. Chem.
119
,
277
(
1926
).
9.
R.
Kaishew
,
Arbeitstatung Festkörper Phys., Dresden
1952
,
81
;
R.
Kaishew
,
Commun. Bulg. Acad. Sci.
1
,
100
(
1950
).
10.
P.
Müller
and
R.
Kern
,
Surf. Sci.
457
,
229
(
2000
).
11.
W.
Winterbottom
,
Acta Metall.
15
,
303
(
1967
).
12.
13.
S.
Stankic
,
R.
Cortes-Huerto
,
N.
Crivat
,
D.
Demaille
,
J.
Goniakowski
, and
J.
Jupille
,
Nanoscale
5
,
2448
(
2013
).
14.
M. D.
Korzec
,
M.
Roczen
,
M.
Schade
,
B.
Wagner
, and
B.
Rech
,
J. Appl. Phys.
115
,
074304
(
2014
).
15.
M.
Niehle
,
J.-B.
Rodriguez
,
L.
Cerutti
,
E.
Tournié
, and
A.
Trampert
,
Acta Mater.
143
,
121
(
2018
).
16.
J.
Tersoff
,
M. D.
Johnson
, and
B. G.
Orr
,
Phys. Rev. Lett.
78
,
282
(
1997
).
17.
N.
Moll
,
A.
Kley
,
E.
Pehlke
, and
M.
Scheffler
,
Phys. Rev. B
54
,
8844
(
1996
).
18.
E.
Pehlke
,
N.
Moll
,
A.
Kley
, and
M.
Scheffler
,
Appl. Phys. A
65
,
525
(
1997
).
19.
W.
Liu
,
W. T.
Zheng
, and
Q.
Jiang
,
Phys. Rev. B
75
,
235322
(
2007
).
20.
J.
Houze
,
S. H.
Kim
,
S.-G.
Kim
,
S. C.
Erwin
, and
L. J.
Whitman
,
Phys. Rev.
B76
,
205303
(
2007
).
21.
G.-H.
Lu
,
M.
Huang
,
M.
Cuma
, and
F.
Liu
,
Surf. Sci.
588
,
61
(
2005
).
You do not currently have access to this content.