Coffee stains remain when coffee drops evaporate. Commonly, dilute coffee exhibits ring-like stains after evaporation governed by self-pinning and vapor diffusion. Modern printing technology requires dense-ink printing, so that it is useful to understand the evaporation dynamics of dense inks. Here, we experimentally explore how strong coffee drops evaporate and how coffee stains are generated from strong coffee that can give an insight into dense inks. We find that evaporation rates of strong coffee drops become slower as coffee concentrations become higher. The evaporation dynamics of strong coffee deviate greatly from dilute coffee, revealing nonlinear evaporation dynamics, attributed to the concentration-dependent fluid property. The nonlinear evaporation of strong coffee can be important in understanding the drying-mediated printing of dense nanoinks.

1.
D.
Brutin
and
V.
Starov
,
Chem. Soc. Rev.
47
,
558
585
(
2018
).
2.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
,
Rev. Mod. Phys.
81
,
739
805
(
2009
).
3.
H. Y.
Erbil
,
Adv. Colloid Interface Sci.
170
,
67
86
(
2012
).
4.
H. Y.
Erbil
,
Adv. Colloid Interface Sci.
222
,
275
290
(
2015
).
5.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
,
Nature
389
,
827
829
(
1997
).
6.
R. D.
Deegan
,
Phys. Rev. E
61
,
475
485
(
2000
).
7.
P. J.
Yunker
,
T.
Still
,
M. A.
Lohr
, and
A. G.
Yodh
,
Nature
476
,
308
311
(
2011
).
8.
I. M.
Hutchings
and
G. D.
Martin
,
Inkjet Technology for Digital Fabrication
(
Wiley
,
2016
).
9.
D.
McManus
,
S.
Vranic
,
F.
Withers
,
V.
Sanchez-Romaguera
,
M.
Macucci
,
H.
Yang
,
R.
Sorrentino
,
K.
Parvez
,
S. K.
Son
,
G.
Iannaccone
 et al,
Nat. Nanotechnol.
12
,
343
351
(
2017
).
10.
G.
Hu
,
T.
Albrow-Owen
,
X.
Jin
,
A.
Ali
,
Y.
Hu
,
R. C. T.
Howe
,
K.
Shehzad
,
Z.
Yang
,
X.
Zhu
,
R. I.
Woodward
 et al.,
Nat. Commun.
8
,
278
(
2017
).
11.
M.
Kuang
,
L.
Wang
, and
Y.
Song
,
Adv. Mater.
26
,
6950
6958
(
2014
).
12.
J.
Jang
,
H.
Kang
,
H. C.
N. Chakravarthula
, and
V.
Subramanian
,
Adv. Electron. Mater.
1
,
1500086
(
2015
).
13.
T.
Yeshua
,
M.
Layani
,
R.
Dekhter
,
U.
Huebner
,
S.
Magdassi
, and
A.
Lewis
,
Small
14
,
1702324
(
2018
).
14.
K.
Keller
,
A. V.
Yakovlev
,
E. V.
Grachova
, and
A. V.
Vinogradov
,
Adv. Funct. Mater.
28
,
1706903
(
2018
).
15.
S.
Conti
,
S.
Lai
,
P.
Cosseddu
, and
A.
Bonfiglio
,
Adv. Mater. Technol.
2
,
1600212
(
2017
).
16.
B. J.
Fischer
,
Langmuir
18
,
60
67
(
2002
).
17.
H.
Hu
and
R. G.
Larson
,
J. Phys. Chem. B
106
,
1334
1344
(
2002
).
18.
H.
Hu
and
R. G.
Larson
,
J. Phys. Chem. B
110
,
7090
7094
(
2006
).
19.
Y. O.
Popov
,
Phys. Rev. E
71
,
036313
(
2005
).
20.
M.
Anyfantakis
and
D.
Baigl
,
ChemPhysChem
16
,
2726
2734
(
2015
).
21.
S.
Devineau
,
M.
Anyfantakis
,
L.
Marichal
,
L.
Kiger
,
M.
Morel
,
S.
Rudiuk
, and
D.
Baigl
,
J. Am. Chem. Soc.
138
,
11623
11632
(
2016
).
22.
H.
Jin
,
J.
Qian
,
L.
Zhou
,
J.
Yuan
,
H.
Huang
,
Y.
Wang
,
W. M.
Tang
, and
H. L. W.
Chan
,
ACS Appl. Mater. Interfaces
8
,
9088
9096
(
2016
).
23.
P.
He
and
B.
Derby
,
Adv. Mater. Interfaces
4
,
1700944
(
2017
).
24.
J. Y.
Kim
,
K.
Cho
,
S.
Ryu
,
S. Y.
Kim
, and
B. M.
Weon
,
Sci. Rep.
5
,
13166
(
2015
).
25.
T. M.
Yen
,
X.
Fu
,
T.
Wei
,
R. U.
Nayak
,
Y.
Shi
, and
Y.-H.
Lo
,
Sci. Rep.
8
,
3157
(
2018
).
26.
C.
Seo
,
D.
Jang
,
J.
Chae
, and
S.
Shin
,
Sci. Rep.
7
,
500
(
2017
).
27.
T.
Xu
,
M. L.
Lam
, and
T.-H.
Chen
,
Sci. Rep.
7
,
42817
(
2017
).
28.
L.
Sun
,
K.
Yang
,
Z.
Lin
,
X.
Zhou
,
Y.
Zhang
, and
T.
Guo
,
Ceram. Int.
44
,
10735
10743
(
2018
).
29.
Y.
Li
,
Q.
Yang
,
M.
Li
, and
Y.
Song
,
Sci. Rep.
6
,
24628
(
2016
).
30.
M. Z.
Miskin
and
H. M.
Jaeger
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
4389
4394
(
2012
).
31.
I. R.
Peters
,
Q.
Xu
, and
H. M.
Jaeger
,
Phys. Rev. Lett.
111
,
028301
(
2013
).
32.
A.
de Rivas
and
E.
Villermaux
,
Phys. Rev. Fluids
1
,
014201
(
2016
).
33.
T.
Yamada
,
K.
Fukuhara
,
K.
Matsuoka
,
H.
Minemawari
,
J.
Tsutsumi
,
N.
Fukuda
,
K.
Aoshima
,
S.
Arai
,
Y.
Makita
,
H.
Kubo
 et al,
Nat. Commun.
7
,
11402
(
2016
).
34.
J. A.
Hondred
,
L. R.
Stromberg
,
C. L.
Mosher
, and
J. C.
Claussen
,
ACS Nano
11
,
9836
9845
(
2017
).
35.
F.
Wang
,
P.
Mao
, and
H.
He
,
Sci. Rep.
6
,
21398
(
2016
).
36.
M. C.
Dang
,
T. M. D.
Dang
, and
E.
Fribourg-Blanc
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
6
,
015003
(
2015
).
37.
J.-W.
Kim
,
J.
Choi
,
S.-J.
Hong
,
J.-I.
Han
, and
Y.-S.
Kim
,
J. Korean Phys. Soc.
57
,
1794
1798
(
2010
).
38.
A. D.
Eales
,
A. F.
Routh
,
N.
Dartnell
, and
S.
Goddard
,
AIChE J.
61
,
1759
1767
(
2015
).
39.
A.
Gençer
,
C.
Schütz
, and
W.
Thielemans
,
Langmuir
33
,
228
234
(
2017
).
40.
H.
Bodiguel
and
J.
Leng
,
Soft Matter
6
,
5451
5460
(
2010
).
41.
N. I.
Lebovka
,
V. A.
Gigiberiya
,
O. S.
Lytvyn
,
Yu. Yu.
Tarasevich
,
I. V.
Vodolazskaya
, and
O. P.
Bondarenko
,
Colloids Surf., A
462
,
52
63
(
2014
).
42.
B.
Sobac
and
D.
Brutin
,
Phys. Rev. E
84
,
011603
(
2011
).
43.
B.
Sobac
and
D.
Brutin
,
Colloids Surf., A
448
,
34
44
(
2014
).
44.
Y. Y.
Tarasevich
,
I. V.
Vodolazskaya
, and
O. P.
Isokova
,
Colloid Polym. Sci.
289
,
1015
1023
(
2011
).
45.
T. A. H.
Nguyen
and
A. V.
Nguyen
,
Langmuir
28
,
16725
16728
(
2012
).
46.
T.
Still
,
P. J.
Yunker
, and
A. G.
Yodh
,
Langmuir
28
,
4984
4988
(
2012
).
47.
I. G.
Hwang
,
J. Y.
Kim
, and
B. M.
Weon
,
Appl. Phys. Lett.
110
,
031602
(
2017
).
48.
J. M.
Stauber
,
S. K.
Wilson
,
B. R.
Duffy
, and
K.
Sefiane
,
J. Fluid Mech.
744
,
R2
(
2014
).
49.
D. M.
Gates
,
Biophysical Ecology
(
Springer-Verlag
,
New York
,
1980
).
50.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
, 96th ed. (
CRC Press
,
2015
).
51.
H.
Tan
,
C.
Diddens
,
M.
Versluis
,
H.-J.
Butt
,
D.
Lohse
, and
X.
Zhang
,
Soft Matter
13
,
2749
2759
(
2017
).
52.
B. M.
Weon
and
J. H.
Je
,
Phys. Rev. E
87
,
013003
(
2013
).
53.
S.
Lone
,
J. M.
Zhang
,
I. U.
Vakarelski
,
E. Q.
Li
, and
S. T.
Thoroddsen
,
Langmuir
33
,
2861
2871
(
2017
).

Supplementary Material

You do not currently have access to this content.