Surface dynamics lie at the heart of many areas of materials and chemical science, including heterogeneous catalysis, epitaxial growth, and device fabrication. Characterizing the dynamics of surface adsorption, reactions, and diffusion at the atomic scale is crucial to understanding and controlling such processes. Here, we use aberration-corrected scanning transmission electron microscopy to analyze the diffusive behavior of Pt atoms adsorbed on the Si(110) surface and characterize the effects of the electron beam on adatom motion, including a bias introduced by the raster scan of the probe. We further observe the evolution of the Si(110) surface, revealing evidence of developing surface steps attributed to the 16 × 2 surface reconstruction. These results demonstrate a framework for studying complex atomic-scale surface dynamics using aberration-corrected electron microscopy.

1.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
, “
7 × 7 reconstruction on Si(111) resolved in real space
,”
Phys. Rev. Lett.
50
,
120
123
(
1983
).
2.
T.
An
,
M.
Yoshimura
,
I.
Ono
, and
K.
Ueda
, “
Elemental structure in Si(110)-(16 × 2) revealed by scanning tunneling microscopy
,”
Phys. Rev. B
61
,
3006
3011
(
2000
).
3.
A. A.
Stekolnikov
,
J.
Furthmüller
, and
F.
Bechstedt
, “
Long-range surface reconstruction: Si(110)-(16 × 2)
,”
Phys. Rev. Lett.
93
,
136104
(
2004
).
4.
T.
Yamasaki
,
K.
Kato
,
T.
Uda
,
T.
Yamamoto
, and
T.
Ohno
, “
First-principles theory of Si(110)-(16 × 2) surface reconstruction for unveiling origin of pentagonal scanning tunneling microscopy images
,”
Appl. Phys. Express
9
,
035501
(
2016
).
5.
H.
Togashi
,
Y.
Takahashi
,
A.
Kato
,
A.
Konno
,
H.
Asaoka
, and
M.
Suemitsu
, “
Observation of initial oxidation on Si(110)-16 × 2 surface by scanning tunneling microscopy
,”
Jpn. J. Appl. Phys., Part 1
46
,
3239
3243
(
2007
).
6.
M.
Suemitsu
,
Y.
Yamamoto
,
H.
Togashi
,
Y.
Enta
,
A.
Yoshigoe
, and
Y.
Teraoka
, “
Initial oxidation of Si(110) as studied by real-time synchrotron-radiation x-ray photomission spectroscopy
,”
J. Vac. Sci. Technol., B
27
,
547
(
2009
).
7.
T.
Nagasawa
,
S.
Shiba
, and
K.
Sueoka
, “
First-principles study on initial stage of oxidation on Si(110) surface
,”
Phys. Status Solidi C
8
,
717
720
(
2011
).
8.
K.
Oura
,
V. G.
Lifshits
,
A. A.
Saranin
,
A. V.
Zotov
, and
M.
Katayama
, “
Hydrogen interaction with clean and modified silicon surfaces
,”
Surf. Sci. Rep.
35
,
1
69
(
1999
).
9.
J.
Wintterlin
,
J.
Trost
,
S.
Renisch
,
R.
Schuster
,
T.
Zambelli
, and
G.
Ertl
, “
Real-time STM observations of atomic equilibrium fluctuations in an adsorbate system: O/Ru(0001)
,”
Surf. Sci.
394
,
159
169
(
1997
).
10.
G.
Schitter
and
M. J.
Rost
, “
Scanning probe microscopy at video-rate
,”
Mater. Today
11
,
40
48
(
2008
).
11.
O. L.
Krivanek
,
M. F.
Chisholm
,
V.
Nicolosi
,
T. J.
Pennycook
,
G. J.
Corbin
,
N.
Dellby
,
M. F.
Murfitt
,
C. S.
Own
,
Z. S.
Szilagyi
,
M. P.
Oxley
,
S. T.
Pantelides
, and
S. J.
Pennycook
, “
Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy
,”
Nature
464
,
571
574
(
2010
).
12.
Q. M.
Ramasse
,
C. R.
Seabourne
,
D.-M.
Kepaptsoglou
,
R.
Zan
,
U.
Bangert
, and
A. J.
Scott
, “
Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy
,”
Nano Lett.
13
,
4989
4995
(
2013
).
13.
T.
Susi
,
J.
Kotakoski
,
D.
Kepaptsoglou
,
C.
Mangler
,
T. C.
Lovejoy
,
O. L.
Krivanek
,
R.
Zan
,
U.
Bangert
,
P.
Ayala
,
J. C.
Meyer
, and
Q. M.
Ramasse
, “
Silicon–carbon bond inversions driven by 60-keV electrons in graphene
,”
Phys. Rev. Lett.
113
,
115501
(
2014
).
14.
P. E.
Batson
, “
Motion of gold atoms on carbon in the aberration-corrected STEM
,”
Microsc. Microanal.
14
,
89
97
(
2008
).
15.
R.
Ishikawa
,
R.
Mishra
,
A. R.
Lupini
,
S. D.
Findlay
,
T.
Taniguchi
,
S. T.
Pantelides
, and
S. J.
Pennycook
, “
Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch
,”
Phys. Rev. Lett.
113
,
155501
(
2014
).
16.
E. D.
Boyes
and
P. L.
Gai
, “
Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ environmental (scanning) transmission electron microscopy (E(S)TEM)
,”
C. R. Phys.
15
,
200
213
(
2014
).
17.
W.
Xu
,
P. C.
Bowes
,
E. D.
Grimley
,
D. L.
Irving
, and
J. M.
LeBeau
, “
In-situ real-space imaging of single crystal surface reconstructions via electron microscopy
,”
Appl. Phys. Lett.
109
,
201601
(
2016
).
18.
The beam convergence semi-angle was 19.7 mrad, and the ADF detector angle range was 62–214 mrad. The probe current was 80 pA and the pixel dwell time was 3 μs. Vacuum pressure in the sample chamber was at approximately 10−5 Pa.
19.
N.
Jiang
, “
Electron beam damage in oxides: A review
,”
Rep. Prog. Phys.
79
,
016501
(
2016
).
20.
R.
Egerton
, “
Beam-induced motion of adatoms in the transmission electron microscope
,”
Microsc. Microanal.
19
,
479
486
(
2013
).
21.
D.
Knez
,
M.
Schnedlitz
,
M.
Lasserus
,
A.
Schiffmann
,
W. E.
Ernst
, and
F.
Hofer
, “
Modelling electron beam induced dynamics in metallic nanoclusters
,”
Ultramicroscopy
192
,
69
79
(
2018
).
22.
X.
Qu
and
Q.
Deng
, “
Damage and recovery induced by a high energy e-beam in a silicon nanofilm
,”
RSC Adv.
7
,
37032
37038
(
2017
).
23.
T.
Furnival
,
R. K.
Leary
, and
P. A.
Midgley
, “
Denoising time-resolved microscopy image sequences with singular value thresholding
,”
Ultramicroscopy
178
,
112
124
(
2017
).
24.
B.
Berkels
,
P.
Binev
,
D. A.
Blom
,
W.
Dahmen
,
R. C.
Sharpley
, and
T.
Vogt
, “
Optimized imaging using non-rigid registration
,”
Ultramicroscopy
138
,
46
56
(
2014
).
25.
E. J.
Candès
,
X.
Li
,
Y.
Ma
, and
J.
Wright
, “
Robust principal component analysis?
,”
J. ACM
58
,
1
37
(
2011
).
26.
J.
Feng
,
H.
Xu
, and
S.
Yan
, “
Online robust pca via stochastic optimization
,” in
Advances in Neural Information Processing Systems
, edited by
C. J. C.
Burges
,
L.
Bottou
,
M.
Welling
,
Z.
Ghahramani
, and
K. Q.
Weinberger
(
Curran Associates, Inc
.,
2013
), Vol. 26, pp.
404
412
.
27.
N.
Chenouard
,
I.
Smal
,
F.
de Chaumont
,
M.
Maška
,
I. F.
Sbalzarini
,
Y.
Gong
,
J.
Cardinale
,
C.
Carthel
,
S.
Coraluppi
,
M.
Winter
,
A. R.
Cohen
,
W. J.
Godinez
,
K.
Rohr
,
Y.
Kalaidzidis
,
L.
Liang
,
J.
Duncan
,
H.
Shen
,
Y.
Xu
,
K. E. G.
Magnusson
,
J.
Jaldén
,
H. M.
Blau
,
P.
Paul-Gilloteaux
,
P.
Roudot
,
C.
Kervrann
,
F.
Waharte
,
J.-Y.
Tinevez
,
S. L.
Shorte
,
J.
Willemse
,
K.
Celler
,
G. P.
van Wezel
,
H.-W.
Dan
,
Y.-S.
Tsai
,
C.
Ortiz de Solórzano
,
J.-C.
Olivo-Marin
, and
E.
Meijering
, “
Objective comparison of particle tracking methods
,”
Nat. Methods
11
,
281
289
(
2014
).
28.
T.
Furnival
,
R. K.
Leary
,
E. C.
Tyo
,
S.
Vajda
,
Q. M.
Ramasse
,
J. M.
Thomas
,
P. D.
Bristowe
, and
P. A.
Midgley
, “
Anomalous diffusion of single metal atoms on a graphene oxide support
,”
Chem. Phys. Lett.
683
,
370
374
(
2017
).
29.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
(Springer US,
2009
).
30.
J.
Kotakoski
,
C.
Mangler
, and
J. C.
Meyer
, “
Imaging atomic-level random walk of a point defect in graphene
,”
Nat. Commun.
5
,
3991
(
2014
).
31.
X.
Sang
and
J. M.
LeBeau
, “
Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge
,”
Ultramicroscopy
138
,
28
35
(
2014
).
32.
J. M.
LeBeau
,
S. D.
Findlay
,
L. J.
Allen
, and
S.
Stemmer
, “
Quantitative atomic resolution scanning transmission electron microscopy
,”
Phys. Rev. Lett.
100
,
206101
(
2008
).
33.
G. S.
Chen
,
C. B.
Boothroyd
, and
C. J.
Humphreys
, “
Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures
,”
Philos. Mag., A
78
,
491
506
(
1998
).
34.
A. D.
Kulkarni
,
D. G.
Truhlar
,
S. G.
Srinivasan
,
A. C. T.
van Duin
,
P.
Norman
, and
T. E.
Schwartzentruber
, “
Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential
,”
J. Phys. Chem. C
117
,
258
269
(
2013
).
35.
L. C.
Ciacchi
and
M. C.
Payne
, “
First-principles molecular-dynamics study of native oxide growth on Si(001)
,”
Phys. Rev. Lett.
95
,
196101
(
2005
).

Supplementary Material

You do not currently have access to this content.