We demonstrated the application of CoPd magnetic devices in single (H2) and dual (H2 and CO) gas detection by varying the thin-film structure. The anomalous Hall effect provided the read-out signal of the devices. The dual-gas sensor was particularly useful for examining whether methane reformation by steam was completed during H2 production where CO is a byproduct. Through in situ Fourier transform infrared and X-ray absorption spectroscopy, we discovered that H2 detection involved a charge-transfer effect between Co and Pd in addition to a surface-adsorption process, for both multilayer and alloy structures; however, CO detection was solely associated with a surface-adsorption process, which only occurred in the alloy structure. The proposed devices demonstrated performances exceeding those of current commercial models (solid-state based) regarding power consumption (<5 mW) because they were not required to undergo a heating process. An Arduino prototype platform was employed to test the modularization of the device, and adequate feasibility was demonstrated.

1.
C. J.
Winter
,
Int. J. Hydrogen Energy
34
,
S1
(
2009
).
2.
D.
Cecere
,
E.
Giacomazzi
, and
A.
Ingenito
,
Int. J. Hydrogen Energy
39
,
10731
(
2014
).
3.
D.
Ipsakis
,
P.
Kechagiopoulos
,
C.
Martavaltzi
,
S.
Voutetakis
,
P.
Seferlis
,
P.
Daoutidis
, and
F.
Stergiopoulos
,
Comput. Aided Chem. Eng.
24
,
913
(
2007
).
4.
F.
Marino
,
C.
Descorme
, and
D.
Duprez
,
Appl. Catal. B: Environ.
54
,
59
(
2004
).
5.
D. Y.
Chung
,
H.
Kim
,
Y. H.
Chung
,
M. J.
Lee
,
S. J.
Yoo
,
A. D.
Bokare
,
W.
Choi
, and
Y. E.
Sung
,
Sci. Rep.
4
,
7450
(
2015
).
6.
A.
Ulvestad
,
M. J.
Welland
,
S. S. E.
Collins
,
R.
Harder
,
E.
Maxey
,
J.
Wingert
,
A.
Singer
,
S.
Hy
,
P.
Mulvaney
,
P.
Zapol
, and
O. G.
Shpyrko
,
Nat. Commun.
6
,
10092
(
2015
).
7.
K.
Munbodh
,
F. A.
Perez
,
C.
Keenan
,
D.
Lederman
,
M.
Zhernenkov
, and
M. R.
Fitzsimmons
,
Phys. Rev. B
83
,
094432
(
2011
).
8.
A.
Ulvestad
and
A.
Yau
,
Nat. Commun.
8
,
1376
(
2017
).
9.
T. C.
Narayan
,
F.
Hayee
,
A.
Baldi
,
A.
Leen Koh
,
R.
Sinclair
, and
J. A.
Dionne
,
Nat. Commun.
8
,
14020
(
2017
).
10.
H.
Yoon
,
M.
Choi
,
T. W.
Lim
,
H.
Kwon
,
K.
Ihm
,
J. K.
Kim
,
S. Y.
Choi
, and
J.
Son
,
Nat. Mater.
15
,
1113
(
2016
).
11.
M.
Deng
,
H.
Freyer
,
S.
Mankovsky
,
H.
Ebert
, and
J.
Voitländer
,
Solid State Commun.
150
,
1262
(
2010
).
12.
C. C.
Hsu
,
P. C.
Chang
,
Y. H.
Chen
,
C. M.
Liu
,
C. T.
Wu
,
H. W.
Yen
, and
W. C.
Lin
,
Sci. Rep.
8
,
3251
(
2018
).
13.
G.
Winer
,
A.
Segal
,
M.
Karpovski
,
V.
Shelukhin
, and
A.
Gerber
,
J. Appl. Phys.
118
,
173901
(
2015
).
14.
J. L.
Xu
,
Y. F.
Li
,
D. Z.
Hou
,
L.
Ye
, and
X. F.
Jin
,
Appl. Phys. Lett.
102
,
162401
(
2013
).
15.
V. R.
Mudinepalli
,
Y. C.
Chen
,
P. C.
Chang
,
C. C.
Hsu
,
C. Y.
Tsai
,
H. C.
Chiu
,
C.
TeWu
,
H. W.
Yen
,
S. J.
Shih
, and
W. C.
Lin
,
J. Alloys Compd.
695
,
2365
(
2017
).
16.
A.
Gerber
,
G.
Kopnov
, and
M.
Karpovski
,
Appl. Phys. Lett.
111
,
143505
(
2017
).
17.
W. C.
Lin
,
C.-J.
Tsai
,
H.-Y.
Huang
,
B.-Y.
Wang
,
V. R.
Mudinepalli
, and
H. C.
Chiu
,
Appl. Phys. Lett.
106
,
012404
(
2015
).
18.
D. N.
Son
and
K.
Takahashi
,
J. Phys. Chem. C
116
,
6200
(
2012
).
19.
J. Y.
Liang
,
Y. C.
Pai
,
T. N.
Lam
,
W. C.
Lin
,
T. S.
Chan
,
C. H.
Lai
, and
Y. C.
Tseng
,
Appl. Phys. Lett.
111
,
023503
(
2017
).
20.
Q. A.
Al-Haija
,
H.
Al-Qadeeb
, and
A.
Al-Lwaimi
,
Proc. Comput. Sci.
21
,
517
(
2013
).
21.
S.
Abraham
and
X.
Li
,
Proc. Comput. Sci.
34
,
165
(
2014
).
22.
L.
Andrews
,
Chem. Soc. Rev.
33
,
123
(
2004
).
23.
B. L.
Mojet
,
S. D.
Ebbesen
, and
L.
Lefferts
,
Chem. Soc. Rev.
39
,
4643
(
2010
).
24.
W. C.
Lin
,
C. J.
Tsai
,
B. Y.
Wang
,
C. H.
Kao
, and
W. F.
Pong
,
Appl. Phys. Lett.
102
,
252404
(
2013
).
25.
W. C.
Lin
,
B. Y.
Wang
,
H. Y.
Huang
,
C. J.
Tsai
, and
V. R.
Mudinepalli
,
J. Alloys Compd.
661
,
20
(
2016
).
26.
K. F.
Huang
,
D. S.
Wang
,
H. H.
Lin
, and
C. H.
Lai
,
Appl. Phys. Lett.
107
,
232407
(
2015
).
27.
B.
Zhang
,
A.
Cao
,
J.
Qiao
,
M.
Tang
,
K.
Cao
,
X.
Zhao
,
S.
Eimer
,
Z.
Si
,
N.
Lei
,
Z.
Wang
,
X.
Lin
,
Z.
Zhang
,
M.
Wu
, and
W.
Zhao
,
Appl. Phys. Lett.
110
,
012405
(
2017
).
28.
See http://www.posifamicrosystems.com/ for “
Datasheet of Thermal Conductivity Type Gas Sensor Die (PTCD10)
” (last accessed May 7,
2018
).
29.
See http://www.figarosensor.com/ for “Datasheet of Catalytic Type Gas Sensor (TGS 6812-D00)” (last accessed May 7,
2018
).
30.
See http://www.figarosensor.com/ for “
Datasheet of Work Function Based Gas Sensor (TGS 8100)
” (last accessed May 7,
2018
).
31.
See http://www.hwsensor.com/ for “
Datasheet of Gas Sensor (MQ-8)
” (last accessed May 7,
2018
).
32.
See https://www.winsen-sensor.com for “
Datasheet of Gas Sensor (ME2)
” (last accessed May 7,
2018
).
33.
See http://www.figarosensor.com/ for “
Datasheet of Catalytic Type Gas Sensor (TGS 203)
” (last accessed May 7,
2018
).
34.
See http://www.hwsensor.com/ for “
Datasheet of Gas Sensor (MQ-7)
” (last accessed May 7,
2018
).
35.
Y.
Liu
,
J.
Parisi
,
X.
Sun
, and
Y.
Lei
,
J. Mater. Chem. A
2
,
9919
(
2014
).
36.
R.
Moos
,
K.
Sahner
,
M.
Fleischer
,
U.
Guth
,
N.
Barsan
, and
U.
Weimar
,
Sensors
9
,
4323
(
2009
).

Supplementary Material

You do not currently have access to this content.