We present the acoustophoretic motion of microparticles simultaneously driven by the acoustic streaming induced drag force (ASF) and acoustic radiation force (ARF) on a phononic crystal plate (PCP). A much faster acoustophoresis can be achieved via a PCP than a traditional standing wave in bulk and surface acoustic wave devices. The mechanism is attributed to the significantly enhanced ASF and ARF originating from the resonant excitation of a nonleaky zero-order antisymmetric Lamb mode intrinsically in the plate, which generates the highly localized field vertical to the surface and periodic field parallel to the surface. We also demonstrate the transition from the ASF dominated acoustophoresis to ARF dominated acoustophoresis as a function of particle size. The predicted trajectories and velocity of acoustophoretic particles by the proposed finite element model are in reasonable agreement with experimental phenomena. This study would aid the development of simple, scalable, integrated, and disposable phononic crystal based acoustofluidic systems for biomedical applications such as rapid mixing, cell trapping, sorting, and patterning.

1.
J.
Friend
and
L. Y.
Yeo
,
Rev. Mod. Phys.
83
(
2
),
647
704
(
2011
).
2.
D.
Hartono
,
Y.
Liu
,
P. L.
Tan
,
X. Y. S.
Then
,
L.-Y. L.
Yung
, and
K.-M.
Lim
,
Lab Chip
11
(
23
),
4072
4080
(
2011
).
3.
P.
Mishra
,
M.
Hill
, and
P.
Glynne-Jones
,
Biomicrofluidics
8
(
3
),
034109
(
2014
).
4.
F.
Guo
,
P.
Li
,
J. B.
French
,
Z.
Mao
,
H.
Zhao
,
S.
Li
,
N.
Nama
,
J. R.
Fick
,
S. J.
Benkovic
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci. U. S. A.
112
(
1
),
43
48
(
2015
).
5.
F.
Xu
,
T. D.
Finley
,
M.
Turkaydin
,
Y.
Sung
,
U. A.
Gurkan
,
A. S.
Yavuz
,
R. O.
Guldiken
, and
U.
Demirci
,
Biomaterials
32
(
31
),
7847
7855
(
2011
).
6.
F.
Gesellchen
,
A. L.
Bernassau
,
T.
Dejardin
,
D. R. S.
Cumming
, and
M. O.
Riehle
,
Lab Chip
14
(
13
),
2266
2275
(
2014
).
7.
C.
Bouyer
,
P.
Chen
,
S.
Gueven
,
T. T.
Demirtas
,
T. J. F.
Nieland
,
F.
Padilla
, and
U.
Demirci
,
Adv. Mater.
28
(
1
),
161
167
(
2016
).
8.
F.
Guo
,
Z.
Mao
,
Y.
Chen
,
Z.
Xie
,
J. P.
Lata
,
P.
Li
,
L.
Ren
,
J.
Liu
,
J.
Yang
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci. U. S. A.
113
(
6
),
1522
1527
(
2016
).
9.
Y. C.
Chen
,
M. X.
Wu
,
L. Q.
Ren
,
J. Y.
Liu
,
P. H.
Whitley
,
L.
Wang
, and
T. J.
Huang
,
Lab Chip
16
(
18
),
3466
3472
(
2016
).
10.
P.
Li
,
Z.
Mao
,
Z.
Peng
,
L.
Zhou
,
Y.
Chen
,
P.-H.
Huang
,
C. I.
Truica
,
J. J.
Drabick
,
W. S.
El-Deiry
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci. U. S. A.
112
(
16
),
4970
4975
(
2015
).
11.
X.
Ding
,
Z.
Peng
,
S.-C. S.
Lin
,
M.
Geri
,
S.
Li
,
P.
Li
,
Y.
Chen
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci. U. S. A.
111
(
36
),
12992
12997
(
2014
).
12.
K. Y.
Wang
,
W.
Zhou
,
Z. G.
Lin
,
F. Y.
Cai
,
F.
Li
,
J. R.
Wu
,
L.
Meng
,
L. L.
Niu
, and
H. R.
Zheng
,
Sens. Actuators, B
258
,
1174
1183
(
2018
).
13.
M.
Wu
,
Y.
Ouyang
,
Z.
Wang
,
R.
Zhang
,
P.-H.
Huang
,
C.
Chen
,
H.
Li
,
P.
Li
,
D.
Quinn
,
M.
Dao
,
S.
Suresh
,
Y.
Sadovsky
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci. U. S. A.
114
(
40
),
10584
10589
(
2017
).
14.
J.
Ye
,
S.
Tang
,
L.
Meng
,
X.
Li
,
X.
Wen
,
S.
Chen
,
L.
Niu
,
X.
Li
,
W.
Qiu
,
H.
Hu
,
M.
Jiang
,
S.
Shang
,
Q.
Shu
,
H.
Zheng
,
S.
Duan
, and
Y.
Li
,
Nano Lett.
18
(
7
),
4148
4155
(
2018
).
15.
W.
Zhou
,
J.
Wang
,
K.
Wang
,
B.
Huang
,
L.
Niu
,
F.
Li
,
F.
Cai
,
Y.
Chen
,
X.
Liu
,
X.
Zhang
,
H.
Cheng
,
L.
Kang
,
L.
Meng
, and
H.
Zheng
,
Lab Chip
17
(
10
),
1725
1731
(
2017
).
16.
J.
Kubanek
,
P.
Shukla
,
A.
Das
,
S. A.
Baccus
, and
M. B.
Goodman
,
J. Neurosci.
38
(
12
),
3081
3091
(
2018
).
17.
H.
Bruus
,
Lab Chip
12
(
6
),
1014
1021
(
2012
).
18.
M.
Gedge
and
M.
Hill
,
Lab Chip
12
(
17
),
2998
3007
(
2012
).
19.
A.
Lenshof
,
C.
Magnusson
, and
T.
Laurell
,
Lab Chip
12
(
7
),
1210
1223
(
2012
).
20.
M.
Wiklund
,
R.
Green
, and
M.
Ohlin
,
Lab Chip
12
(
14
),
2438
2451
(
2012
).
21.
K.
Yasuda
and
T.
Kamakura
,
Appl. Phys. Lett.
71
(
13
),
1771
1773
(
1997
).
22.
M. A. B.
Andrade
,
A. L.
Bernassau
, and
J. C.
Adamowski
,
Appl. Phys. Lett.
109
(
4
),
044101
(
2016
).
23.
T. D.
Nguyen
,
V. T.
Tran
,
Y. Q.
Fu
, and
H.
Du
,
Appl. Phys. Lett.
112
(
21
),
213507
(
2018
).
24.
L.
Meng
,
F.
Cai
,
J.
Chen
,
L.
Niu
,
Y.
Li
,
J.
Wu
, and
H.
Zheng
,
Appl. Phys. Lett.
100
(
17
),
173701
(
2012
).
25.
F. G.
Mitri
,
Appl. Phys. Lett.
103
(
11
),
114102
(
2013
).
26.
N.
Li
,
J.
Hu
,
H.
Li
,
S.
Bhuyan
, and
Y.
Zhou
,
Appl. Phys. Lett.
101
(
9
),
093113
(
2012
).
27.
Q.
Tang
,
X.
Wang
, and
J.
Hu
,
Appl. Phys. Lett.
110
(
10
),
104105
(
2017
).
28.
L.
Feng
,
S.
Liang
,
X.
Zhou
,
J.
Yang
,
Y.
Jiang
,
D.
Zhang
, and
F.
Arai
,
Appl. Phys. Lett.
111
(
20
),
203703
(
2017
).
29.
D.
Ahmed
,
T.
Baasch
,
N.
Blondel
,
N.
Laubli
,
J.
Dual
, and
B. J.
Nelson
,
Nat. Commun.
8
,
770
(
2017
).
30.
J.
Lei
,
P.
Glynne-Jones
, and
M.
Hill
,
Lab Chip
13
(
11
),
2133
2143
(
2013
).
31.
P. B.
Muller
,
R.
Barnkob
,
M. J. H.
Jensen
, and
H.
Bruus
,
Lab Chip
12
(
22
),
4617
4627
(
2012
).
32.
N.
Nama
,
R.
Barnkob
,
Z.
Mao
,
C. J.
Kaehler
,
F.
Costanzo
, and
T. J.
Huang
,
Lab Chip
15
(
12
),
2700
2709
(
2015
).
33.
Z. Y.
Liu
,
X. X.
Zhang
,
Y. W.
Mao
,
Y. Y.
Zhu
,
Z. Y.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
(
5485
),
1734
1736
(
2000
).
34.
M.
Maldovan
,
Nature
503
(
7475
),
209
217
(
2013
).
35.
F.
Li
,
F.
Cai
,
Z.
Liu
,
L.
Meng
,
M.
Qian
,
C.
Wang
,
Q.
Cheng
,
M.
Qian
,
X.
Liu
,
J.
Wu
,
J.
Li
, and
H.
Zheng
,
Phys. Rev. Appl.
1
(
5
),
051001
(
2014
).
36.
H.
Li
,
Y.
Wang
,
M.
Ke
,
S.
Peng
,
F.
Liu
,
C.
Qiu
, and
Z.
Liu
,
Appl. Phys. Lett.
112
(
22
),
223501
(
2018
).
37.
T.
Wang
,
M.
Ke
,
S.
Xu
,
J.
Feng
,
C.
Qiu
, and
Z.
Liu
,
Appl. Phys. Lett.
106
(
16
),
163504
(
2015
).
38.
X.
Xia
,
Q.
Yang
,
H.
Li
,
M.
Ke
,
S.
Peng
,
C.
Qiu
, and
Z.
Liu
,
Appl. Phys. Lett.
111
(
3
),
031903
(
2017
).
39.
T.
Wang
,
M.
Ke
,
W.
Li
,
Q.
Yang
,
C.
Qiu
, and
Z.
Liu
,
Appl. Phys. Lett.
109
(
12
),
123506
(
2016
).
40.
M.
Wang
,
C.
Qiu
,
S.
Zhang
,
R.
Han
,
M.
Ke
, and
Z.
Liu
,
Phys. Rev. E
96
(
5
),
052604
(
2017
).
41.
T.
Wang
,
M.
Ke
,
C.
Qiu
, and
Z.
Liu
,
J. Appl. Phys.
119
(
21
),
214502
(
2016
).
42.
Z.
He
,
H.
Jia
,
C.
Qiu
,
S.
Peng
,
X.
Mei
,
F.
Cai
,
P.
Peng
,
M.
Ke
, and
Z.
Liu
,
Phys. Rev. Lett.
105
(
7
),
074301
(
2010
).
43.
C. P.
Lee
and
T. G.
Wang
,
J. Acoust. Soc. Am.
85
(
3
),
1081
1088
(
1989
).
44.
W. L.
Nyborg
,
J. Acoust. Soc. Am.
30
(
4
),
329
339
(
1958
).
45.
S.-T.
Kang
and
C.-K.
Yeh
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
6
),
1451
1459
(
2010
).
46.
Z. M.
Zhu
,
X. L.
Zhao
,
G. H.
Du
, and
J. R.
Wu
,
J. Acoust. Soc. Am.
104
(
1
),
86
90
(
1998
).
47.
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
, and
H.
Bruus
,
Phys. Rev. E
86
(
5
),
056307
(
2012
).
48.
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
, and
H.
Bruus
,
Lab Chip
10
(
5
),
563
570
(
2010
).

Supplementary Material

You do not currently have access to this content.