We report a research study on reduced graphene oxide conducted with electron paramagnetic resonance and impedance spectroscopy techniques. Coupling of the two experimental methods allowed us to obtain detailed information on the charge carrier transport in the graphene material and make an attempt at explaining the peculiar behaviour of para- and ferromagnetic properties of the studied system. Two scattering processes characterized by different dynamics were found. An ambipolar-like character of the charge transport was observed with transition between holes and electrons driven by the bias voltage, temperature, and adsorption. Electron paramagnetic resonance spectra showed a typical signal from localized centers as well as weak ferromagnetism. The latter correlates with the change of carriers' polarity. This indicates that ferromagnetic coupling between the localized states in graphene is related to the type of charge carriers. Such behavior points to the similarity of reduced graphene oxide to the dilute (ferro)magnetic semiconductors.

1.
O. C.
Compton
and
S. T.
Nguyen
,
Small
6
,
711
(
2010
).
2.
A.
Bianco
,
H. M.
Chen
,
T.
Enoki
,
Y.
Gogotsi
, and
R. H.
Hurt
,
Carbon
65
,
1
(
2013
).
3.
B. I.
Shklovskii
and
A. L.
Efros
,
Electronic Properties of Doped Semiconductors (
Springer-Verlag Inc
,
New York, NY
,
1984
).
4.
A. W. P.
Fung
,
M. S.
Dresselhaus
, and
M.
Endo
,
Phys. Rev. B
48
,
14953
(
1993
).
5.
M.
Kempiński
,
W.
Kempiński
,
J.
Kaszyński
, and
M.
Śliwińska-Bartkowiak
,
Appl. Phys. Lett.
88
,
143103
(
2006
).
6.
H.
Sato
,
N.
Kawatsu
,
T.
Enoki
,
M.
Endo
,
R.
Kobori
,
S.
Maruyama
, and
K.
Kaneko
,
Carbon
45
,
214
(
2007
).
7.
W.
Kempiński
,
D.
Markowski
,
M.
Kempiński
, and
M.
Śliwińska-Bartkowiak
,
Carbon
57
,
533
(
2013
).
9.
X.
Yang
and
K.
Mohanram
, “
Ambipolar electronics
,”
Technical Report No. TREE1002
(Rice University,
2010
).
10.
T.
Dietl
and
H.
Ohno
,
Rev. Mod. Phys.
86
,
187
(
2014
).
11.
C. S.
Park
,
Y.
Zhao
,
Y.
Shon
,
C. S.
Yoon
,
H.
Lee
, and
C. J.
Lee
,
AIP Adv.
4
,
087120
(
2014
).
12.
W. S.
Hummers
and
R. E.
Offeman
,
J. Am. Chem. Soc.
80
,
1339
(
1958
).
13.
S.
Łoś
,
L.
Duclaux
,
W.
Kempiński
, and
M.
Połomska
,
Microporous Mesoporous Mater.
130
,
21
(
2010
).
14.
M.
Kempiński
,
W.
Kempiński
, and
M.
Śliwińska-Bartkowiak
,
Rev. Adv. Mater. Sci.
12
,
72
(
2006
); available at http://www.ipme.ru/e-journals/RAMS/no_11206/kempinski.pdf.
15.
M.
Kempiński
,
M.
Śliwińska-Bartkowiak
, and
W.
Kempiński
,
Rev. Adv. Mater. Sci.
14
,
163
(
2007
); available at http://www.ipme.ru/e-journals/RAMS/no_21407/kempinski.pdf.
16.
K.
Tadyszak
,
M.
Maćkowiak
,
M.
Augustyniak-Jabłokow
, and
R.
Strzelczyk
,
J. Mol. Struct.
1076
,
31
(
2014
).
17.
M.
Augustyniak-Jabłokow
,
M.
Maćkowiak
,
K.
Tadyszak
, and
R.
Strzelczyk
,
Acta Phys. Pol. A
127
,
537
(
2015
).
18.
19.
20.
A. L.
Efros
and
B. I.
Shklovskii
,
J. Phys. C
8
,
L49
(
1975
).
21.
Z. H.
Khan
,
M.
Husain
,
T. P.
Perng
,
N.
Salah
, and
S.
Habib
,
J. Phys.: Condens. Matter
20
,
475207
(
2008
).
22.
K.
Uosaki
and
H.
Kita
,
J. Electrochem. Soc.
130
,
895
(
1983
).
23.
K.
Azumi
,
T.
Ohtsuka
, and
N.
Sato
,
J. Electrochem. Soc.
134
,
1352
(
1987
).
24.
M.
Kempiński
,
P.
Florczak
,
S.
Jurga
,
M.
Śliwinska-Bartkowiak
, and
W.
Kempiński
,
Appl. Phys. Lett.
111
,
084102
(
2017
).

Supplementary Material

You do not currently have access to this content.