Hexagonal boron nitride nanosheets (h-BNNSs) are excellent candidates as fillers of polymer-based thermal interface materials for electronic packaging. Chemical functionalization of h-BNNSs is necessary to improve the dispersity of the h-BNNSs and reduce the interfacial thermal resistance (ITR) in the composites. However, though studied extensively, the thermal conductivity (TC) of the chemically functionalized h-BNNS/polymer composites is still well below expectations. Among the possible reasons, the TCs of the functionalized h-BNNSs themselves need to be considered thoroughly, as it has been shown that TC of graphene could be dramatically reduced to less than 10 W m−1 K−1 by point defects. Here, we investigate the TCs of hexagonal boron nitride (h-BN) monolayers covalently adsorbed with -OH and -O(CH2)4CH3 groups based on equilibrium molecular dynamics simulations. The TC of the functionalized h-BN decreases monotonically with the increasing concentration of adsorbed groups and tends to saturate at high concentrations. We surprisingly find that the almost-saturated TCs of the functionalized h-BN monolayers are still over 100 W m−1 K−1, about 25% of the value of the pristine h-BN monolayer. The different functional groups have a similar effect on the TCs, which are mostly determined by the extent of distortion of the local 2D structure, and the functionalization introduces no additional anisotropy to the TC. Therefore, we conclude that the chemically functionalized h-BNs themselves are sufficiently thermally conductive as fillers of composites, and the chemical functionalization should be encouraged, with the focus on digging into how to reduce the ITR more effectively.

1.
A. L.
Moore
and
L.
Shi
,
Mater. Today
17
(
4
),
163
174
(
2014
).
2.
J.
Hansson
,
T. M. J.
Nilsson
,
L.
Ye
, and
J.
Liu
,
Int. Mater. Rev.
63
(
1
),
22
45
(
2017
).
3.
C.
Sevik
,
A.
Kinaci
,
J. B.
Haskins
, and
T.
Çağın
,
Phys. Rev. B
84
,
085409
(
2011
).
4.
Z.
Zheng
,
M.
Cox
, and
B.
Li
,
J. Mater. Sci.
53
(
1
),
66
99
(
2018
).
5.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
P. J.
Kelly
, and
J.
van den Brink
,
Phys. Rev. B
76
(
7
),
073103
(
2007
).
6.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
,
Nat. Photonics
10
,
262
(
2016
).
7.
H.
Jiang
,
Z.
Wang
,
H.
Geng
,
X.
Song
,
H.
Zeng
, and
C.
Zhi
,
ACS Appl. Mater. Interfaces
9
(
11
),
10078
10084
(
2017
).
8.
M.
Loeblein
,
S. H.
Tsang
,
M.
Pawlik
,
E. J. R.
Phua
,
H.
Yong
,
X. W.
Zhang
,
C. L.
Gan
, and
E. H. T.
Teo
,
ACS Nano
11
(
2
),
2033
2044
(
2017
).
9.
L. M.
Guiney
,
N. D.
Mansukhani
,
A. E.
Jakus
,
S. G.
Wallace
,
R. N.
Shah
, and
M. C.
Hersam
,
Nano Lett.
18
(
6
),
3488
3493
(
2018
).
10.
J.
Sun
,
Y.
Yao
,
X.
Zeng
,
G.
Pan
,
J.
Hu
,
Y.
Huang
,
R.
Sun
,
J.-B.
Xu
, and
C.-P.
Wong
,
Adv. Mater. Interfaces
4
(
17
),
1700563
(
2017
).
11.
C.
Huang
,
X.
Qian
, and
R.
Yang
,
Mater. Sci. Eng., R
132
,
1
22
(
2018
).
12.
T.
Luo
and
R.
Lloyd John
,
Adv. Funct. Mater.
22
(
12
),
2495
2502
(
2012
).
13.
Q.
Weng
,
X.
Wang
,
X.
Wang
,
Y.
Bando
, and
D.
Golberg
,
Chem. Soc. Rev.
45
(
14
),
3989
4012
(
2016
).
14.
Y.
Zhang
,
J. R.
Choi
, and
S.-J.
Park
,
Polymer
143
,
1
9
(
2018
).
15.
N.
Yang
,
C.
Xu
,
J.
Hou
,
Y.
Yao
,
Q.
Zhang
,
M. E.
Grami
,
L.
He
,
N.
Wang
, and
X.
Qu
,
RSC Adv.
6
(
22
),
18279
18287
(
2016
).
16.
Y.
Zhang
,
J. R.
Choi
, and
S.-J.
Park
,
Composites, Part A
101
,
227
236
(
2017
).
17.
G.
Li
,
R.
Xing
,
P.
Geng
,
Z.
Liu
,
L.
He
,
N.
Wang
,
Q.
Zhang
, and
X.
Qu
,
Polym. Adv. Technol.
29
(
1
),
337
346
(
2018
).
18.
H.
Zhang
,
G.
Lee
, and
K.
Cho
,
Phys. Rev. B
84
(
11
),
115460
(
2011
).
19.
Y.
Kuang
and
B.
Huang
,
Polymer
56
,
563
571
(
2015
).
20.
Y.
Ni
,
H.
Han
,
S.
Volz
, and
T.
Dumitricǎ
,
J. Phys. Chem. C
119
(
22
),
12193
12198
(
2015
).
21.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
,
J. Phys. Chem.
94
(
26
),
8897
8909
(
1990
).
22.
M.
Salavati
,
H.
Ghasemi
, and
T.
Rabczuk
,
Comput. Mater. Sci.
149
,
460
465
(
2018
).
23.
W.
Lei
,
V. N.
Mochalin
,
D.
Liu
,
S.
Qin
,
Y.
Gogotsi
, and
Y.
Chen
,
Nat. Commun.
6
,
8849
(
2015
).
24.
M.
Darvish Ganji
and
R.
Dodangeh
,
Phys. Chem. Chem. Phys.
19
(
19
),
12032
12044
(
2017
).
25.
J.
Wang
,
D.
Zhao
,
X.
Zou
,
L.
Mao
, and
L.
Shi
,
J. Mater. Sci.: Mater. Electron.
28
(
17
),
12984
12994
(
2017
).
26.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
(
6
),
570
586
(
1957
).
27.
Z.
Wang
and
X.
Ruan
,
J. Appl. Phys.
121
(
4
),
044301
(
2017
).
28.
X.
Wu
,
V.
Varshney
,
J.
Lee
,
Y.
Pang
,
A. K.
Roy
, and
T.
Luo
,
Chem. Phys. Lett.
669
,
233
237
(
2017
).
29.
H.-M.
Wang
,
Y.-J.
Liu
,
H.-X.
Wang
,
J.-X.
Zhao
,
Q.-H.
Cai
, and
X.-Z.
Wang
,
J. Mol. Model.
19
(
12
),
5143
5152
(
2013
).
30.
S. J.
Mahdizadeh
,
E. K.
Goharshadi
, and
G.
Akhlamadi
,
J. Mol. Graphics Model.
68
,
1
13
(
2016
).
31.
I.
Jo
,
M. T.
Pettes
,
J.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
Z.
Yao
, and
L.
Shi
,
Nano Lett.
13
(
2
),
550
554
(
2013
).
32.
S.
Hu
,
J.
Chen
,
N.
Yang
, and
B.
Li
,
Carbon
116
,
139
144
(
2017
).

Supplementary Material

You do not currently have access to this content.