We demonstrate an acoustic generalized Eaton lens that steers an acoustic wave to a desired angle, to propose a design method for gradient-index devices using the sub-wavelength structure to shape an acoustic wave. Based on investigations on the effective parameter with several methods: the S-parameter retrieval method, Floquet-Bloch calculations, and multiple scattering theory (MST) for the cylindrical rigid rod structure, we speculate the design process to realize inhomogeneous refractive index distribution. For realization of a high effective index (∼2), the MST design inevitably fails, whereas the Floquet-Bloch calculations and S-parameter retrieval give identical results. By appropriately designing a two-dimensional array of cylindrical PMMA rods, we experimentally verify the acoustic generalized Eaton lenses for steering angles of 15° and 45°. Furthermore, the use of non-resonant metamaterials enables the proposed devices to work in the broad frequency range from 4 to 8 kHz.

1.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
,
1780
(
2006
).
2.
3.
W.
Cai
,
U. K.
Chettiar
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Nat. Photonics
1
,
224
(
2007
).
4.
S.
Zhang
,
D. A.
Genov
,
C.
Sun
, and
X.
Zhang
,
Phys. Rev. Lett.
100
,
123002
(
2008
).
5.
J.
Eaton
,
IRE Trans. Antennas Propag.
4
,
66
(
1952
).
6.
A. S.
Gutman
,
J. Appl. Phys.
25
,
855
(
1954
).
7.
8.
T. M.
Chang
,
G.
Dupont
,
S.
Enoch
, and
S.
Guenneau
,
New J. Phys.
14
,
035011
(
2012
).
9.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
,
977
(
2006
).
10.
Y. G.
Ma
,
C. K.
Ong
,
T.
Tyc
, and
U.
Leonhardt
,
Nat. Mater.
8
,
639
(
2009
).
11.
A.
Climente
,
D.
Torrent
, and
J.
Sánchez-Dehesa
,
Appl. Phys. Lett.
105
,
064101
(
2014
).
13.
V. N.
Smolyaninova
,
I. I.
Smolyaninov
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Opt. Lett.
35
,
3396
(
2010
).
14.
T.
Zentgraf
,
Y.
Liu
,
M. H.
Mikkelsen
,
J.
Valentine
, and
X.
Zhang
,
Nat. Nanotechnol.
6
,
151
(
2011
).
15.
16.
S.
Koo
,
C.
Cho
,
J.
Jeong
, and
N.
Park
,
Nat. Commun.
7
,
13012
(
2016
).
17.
R.
Zhu
,
C.
Ma
,
B.
Zheng
,
M. Y.
Musa
,
L.
Jing
,
Y.
Yang
,
H.
Wang
,
S.
Dehdashti
,
N. X.
Fang
, and
H.
Chen
,
Appl. Phys. Lett.
110
,
113503
(
2017
).
18.
C. M.
Park
and
S. H.
Lee
,
Appl. Phys. Lett.
112
,
074101
(
2018
).
19.
D. R.
Smith
,
S.
Schultz
,
P.
Markoš
, and
C. M.
Soukoulis
,
Phys. Rev. B
65
,
195104
(
2002
).
20.
X.
Chen
,
T. M.
Grzegorczyk
,
B.-I.
Wu
,
J.
Pacheco
, and
J. A.
Kong
,
Phys. Rev. E
70
,
016608
(
2004
).
21.
V.
Fokin
,
M.
Ambati
,
C.
Sun
, and
X.
Zhang
,
Phys. Rev. B
76
,
144302
(
2007
).
22.
D.
Torrent
and
J.
Sánchez-Dehesa
,
Phys. Rev. B
74
,
224305
(
2006
).
23.
D.
Torrent
,
A.
Håkansson
,
F.
Cervera
, and
J.
Sánchez-Dehesa
,
Phys. Rev. Lett.
96
,
204302
(
2006
).
24.
C.
Fietz
,
Y.
Urzhumov
, and
G.
Shvets
,
Opt. Express
19
,
19027
(
2011
).
25.
M.
Kim
and
J.
Rho
,
Opt. Express
26
,
14051
(
2018
).
26.
C.
Caloz
and
T.
Itoh
,
Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications
(
John Wiley & Sons
,
2005
).
27.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
,
1989
).
28.
COMSOL
,
Acoustic Module 4.3b User's Guide
(
COMSOL, Inc.
,
2013
).

Supplementary Material

You do not currently have access to this content.