In recent years, photoelectronic synaptic devices have emerged as a platform for use in next-generation neuromorphic systems and artificial neural networks (ANNs). In this paper, we report an artificial photoelectronic synapse based on an ion-gel gated In-Zn-O phototransistor. The phototransistor is stimulated by a deep ultraviolet light spike, and it can process and store information in the form of an electric current. Key biological synaptic behaviors were investigated, including excitatory post-synaptic current and paired pulse facilitation. Furthermore, channel conduction can be changed by photoelectric synergy in order to simulate potentiation and depression behavior in the human brain. Most importantly, four forms of spike-timing dependent plasticity learning principles were realized by a photoelectric hybrid stimulation. Our studies provide a path towards hybrid photoelectronic ANNs capable of performing solar-blind sensitive tasks.

1.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
,
Nat. Electron
1
,
22
29
(
2018
).
2.
H.
Kim
,
S.
Hwang
,
J.
Park
,
S.
Yun
,
J.-H.
Lee
, and
B.-G.
Park
,
IEEE Electron Device Lett.
39
,
630
633
(
2018
).
3.
L. Q.
Zhu
,
C. J.
Wan
,
L. Q.
Guo
,
Y.
Shi
, and
Q.
Wan
,
Nat. Commun.
5
,
3158
(
2014
).
4.
C.
Qian
,
L.-A.
Kong
,
J.
Yang
,
Y.
Gao
, and
J.
Sun
,
Appl. Phys. Lett.
110
,
083302
(
2017
).
5.
J.
Sun
,
Y.
Fu
, and
Q.
Wan
,
J. Phys. D: Appl. Phys.
51
,
314004
(
2018
).
6.
D.
Kuzum
,
S.
Yu
, and
H. S.
Wong
,
Nanotechnology
24
,
382001
(
2013
).
7.
L. F.
Abbott
and
W. G.
Regehr
,
Nature
431
,
796
(
2004
).
8.
T.
Chang
,
S.-H.
Jo
, and
W.
Lu
,
ACS Nano
5
,
7669
(
2011
).
9.
T.
Ohno
,
T.
Hasegawa
,
T.
Tsuruoka
,
K.
Terabe
,
J. K.
Gimzewski
, and
M.
Aono
,
Nat. Mater.
10
,
591
595
(
2011
).
10.
V. K.
Sangwan
,
H. S.
Lee
,
H.
Bergeron
,
I.
Balla
,
M. E.
Beck
,
K. S.
Chen
, and
M. C.
Hersam
,
Nature
554
,
500
504
(
2018
).
11.
L.-A.
Kong
,
J.
Sun
,
C.
Qian
,
Y.
Fu
,
J.
Wang
,
J.
Yang
, and
Y.
Gao
,
Org. Electron.
47
,
126
132
(
2017
).
12.
Y.
van de Burgt
,
E.
Lubberman
,
E. J.
Fuller
,
S. T.
Keene
,
G. C.
Faria
,
S.
Agarwal
,
M. J.
Marinella
,
A.
Alec Talin
, and
A.
Salleo
,
Nat. Mater.
16
,
414
418
(
2017
).
13.
H. K.
Li
,
T. P.
Chen
,
P.
Liu
,
S. G.
Hu
,
Y.
Liu
,
Q.
Zhang
, and
P. S.
Lee
,
J. Appl. Phys.
119
,
244505
(
2016
).
14.
S.
Qin
,
F.
Wang
,
Y.
Liu
,
Q.
Wan
,
X.
Wang
,
Y.
Xu
,
Y.
Shi
,
X.
Wang
, and
R.
Zhang
,
2D Mater.
4
,
035022
(
2017
).
15.
H.
Tan
,
G.
Liu
,
H.
Yang
,
X.
Yi
,
L.
Pan
,
J.
Shang
,
S.
Long
,
M.
Liu
,
Y.
Wu
, and
R. W.
Li
,
ACS Nano
11
,
11298
11305
(
2017
).
16.
C.
Qian
,
J.
Sun
,
L.-A.
Kong
,
Y.
Fu
,
Y.
Chen
,
J.
Wang
,
S.
Wang
,
H.
Xie
,
H.
Huang
,
J.
Yang
, and
Y.
Gao
,
ACS Photonics
4
,
2573
(
2017
).
17.
X.
Zhu
and
W. D.
Lu
,
ACS Nano
12
,
1242
1249
(
2018
).
18.
G.-Q.
Bi
and
M.-M.
Poo
,
J. Neurosci.
18
,
10464
(
1998
).
19.
P.
Gkoupidenis
,
D. A.
Koutsouras
, and
G. G.
Malliaras
,
Nat. Commun.
8
,
15448
(
2017
).
20.
J.
Shi
,
S. D.
Ha
,
Y.
Zhou
,
F.
Schoofs
, and
S.
Ramanathan
,
Nat. Commun.
4
,
2676
(
2013
).
21.
H.
Kim
,
S.
Hwang
,
J.
Park
, and
B. G.
Park
,
Nanotechnology
28
,
405202
(
2017
).
22.
E.
Covi
,
S.
Brivio
,
A.
Serb
,
T.
Prodromakis
,
M.
Fanciulli
, and
S.
Spiga
,
Front. Neurosci.
10
,
482
(
2016
).
23.
J.
Choi
,
J.
Park
,
K.
Lim
,
N.
Cho
,
J.
Lee
,
S.
Jeon
, and
Y.
Kim
,
Appl. Phys. Lett.
109
,
132105
(
2016
).
24.
A. J.
Leenheer
,
J. D.
Perkins
,
M. F. A. M.
van Hest
,
J. J.
Berry
,
R. P.
O'Hayre
, and
D. S.
Ginley
,
Phys. Rev. B
77
,
115215
(
2008
).
25.
S.
Jeon
,
S. E.
Ahn
,
I.
Song
,
C. J.
Kim
,
U. I.
Chung
,
E.
Lee
,
I.
Yoo
,
A.
Nathan
,
S.
Lee
,
J.
Robertson
, and
K.
Kim
,
Nat. Mater.
11
,
301
305
(
2012
).
26.
S.
Jeon
,
I.
Song
,
S.
Lee
,
B.
Ryu
,
S. E.
Ahn
,
E.
Lee
,
Y.
Kim
,
A.
Nathan
,
J.
Robertson
, and
U. I.
Chung
,
Adv. Mater.
26
,
7102
7109
(
2014
).
27.
M.
Lee
,
W.
Lee
,
S.
Choi
,
J. W.
Jo
,
J.
Kim
,
S. K.
Park
, and
Y. H.
Kim
,
Adv. Mater.
29
,
1700951
(
2017
).
28.
L-a
Kong
,
J.
Sun
,
C.
Qian
,
G.
Gou
,
Y.
He
,
J.
Yang
, and
Y.
Gao
,
Org. Electron.
39
,
64
70
(
2016
).
29.
K. H.
Lee
,
M. S.
Kang
,
S.
Zhang
,
Y.
Gu
,
T. P.
Lodge
, and
C. D.
Frisbie
,
Adv. Mater.
24
,
4457
4462
(
2012
).
30.
Q.
Wei
,
M.
Mukaida
,
Y.
Naitoh
, and
T.
Ishida
,
Adv. Mater.
25
,
2831
2836
(
2013
).
31.
H.
Zhu
,
A.
Liu
,
F.
Shan
,
W.
Yang
,
W.
Zhang
,
D.
Li
, and
J.
Liu
,
Carbon
100
,
201
207
(
2016
).
32.
A. D.
Mottram
,
Y. H.
Lin
,
P.
Pattanasattayavong
,
K.
Zhao
,
A.
Amassian
, and
T. D.
Anthopoulos
,
ACS Appl. Mater. Interfaces
8
,
4894
4902
(
2016
).
33.
B. K.
Barnes
and
K. S.
Das
,
Sci. Rep.
8
,
2184
(
2018
).
34.
H. K.
He
,
R.
Yang
,
W.
Zhou
,
H. M.
Huang
,
J.
Xiong
,
L.
Gan
,
T. Y.
Zhai
, and
X.
Guo
,
Small
14
,
1800079
(
2018
).
35.
D. C.
Hu
,
R.
Yang
,
L.
Jiang
, and
X.
Guo
,
ACS Appl. Mater. Interfaces
10
,
6463
6470
(
2018
).
36.
S.-J.
Choi
,
C.-J.
Choi
,
J.-Y.
Kim
,
M.
Jang
, and
Y.-K.
Choi
,
IEEE Trans. Electron Devices
58
,
427
432
(
2011
).
37.
C.
Li
,
Y.
Bando
,
M.
Liao
,
Y.
Koide
, and
D.
Golberg
,
Appl. Phys. Lett.
97
,
161102
(
2010
).
38.
D. Y.
Guo
,
Z. P.
Wu
,
Y. H.
An
,
X. C.
Guo
,
X. L.
Chu
,
C. L.
Sun
,
L. H.
Li
,
P. G.
Li
, and
W. H.
Tang
,
Appl. Phys. Lett.
105
,
023507
(
2014
).
39.
S.
Kim
,
S.
Choi
,
J.
Lee
, and
W. D.
Lu
,
ACS Nano
8
,
10262
(
2014
).
40.
Z.
Wang
,
S.
Joshi
,
S. E.
Savel'ev
,
H.
Jiang
,
R.
Midya
,
P.
Lin
,
M.
Hu
,
N.
Ge
,
J. P.
Strachan
,
Z.
Li
,
Q.
Wu
,
M.
Barnell
,
G. L.
Li
,
H. L.
Xin
,
R. S.
Williams
,
Q.
Xia
, and
J. J.
Yang
,
Nat. Mater.
16
,
101
(
2017
).

Supplementary Material

You do not currently have access to this content.