Nanometer-sharp metallic tips are known to be excellent electron emitters. They are used in highest-resolution electron microscopes in cold field emission mode to generate the most coherent electron beam in continuous-wave operation. For time-resolved operation, sharp metal needle tips have recently been triggered with femtosecond laser pulses. We show here that electrons emitted with near-infrared femtosecond laser pulses at laser oscillator repetition rates show the same spatial coherence properties as electrons in cold field emission mode in cw operation. From electron interference fringes, obtained with the help of a carbon nanotube biprism beam splitter, we deduce a virtual source size of less than (0.65 ± 0.06) nm for both operation modes, a factor of ten smaller than the geometrical source size. These results bear promise for ultrafast electron diffraction, ultrafast electron microscopy, and other techniques relying on highly coherent and ultrafast electron beams.

1.
F.
Hasselbach
,
Rep. Prog. Phys.
73
,
016101
(
2010
).
3.
M.
Aidelsburger
,
F. O.
Kirchner
,
F.
Krausz
, and
P.
Baum
,
Proc. Natl. Acad. Sci.
107
,
19714
(
2010
).
4.
B.
Barwick
,
D. J.
Flannigan
, and
A. H.
Zewail
,
Nature
462
,
902
(
2009
).
5.
A.
Feist
,
N.
Bach
,
N. R.
da Silva
,
T.
Danz
,
M.
Möller
,
K. E.
Priebe
,
T.
Domröse
,
J. G.
Gatzmann
,
S.
Rost
,
J.
Schauss
,
S.
Strauch
,
R.
Bormann
,
M.
Sivis
,
S.
Schäfer
, and
C.
Ropers
,
Ultramicroscopy
176
,
63
(
2017
).
6.
P.
Hommelhoff
,
C.
Kealhofer
, and
M. A.
Kasevich
,
Phys. Rev. Lett.
97
,
247402
(
2006
).
7.
P.
Hommelhoff
,
Y.
Sortais
,
A.
Aghajani-Talesh
, and
M. A.
Kasevich
,
Phys. Rev. Lett.
96
,
077401
(
2006
).
8.
C.
Ropers
,
D. R.
Solli
,
C. P.
Schulz
,
C.
Lienau
, and
T.
Elsaesser
,
Phys. Rev. Lett.
98
,
043907
(
2007
).
9.
H.
Yanagisawa
,
C.
Hafner
,
P.
Doná
,
M.
Klöckner
,
D.
Leuenberger
,
T.
Greber
,
M.
Hengsberger
, and
J.
Osterwalder
,
Phys. Rev. Lett.
103
,
257603
(
2009
).
10.
R.
Bormann
,
M.
Gulde
,
A.
Weismann
,
S. V.
Yalunin
, and
C.
Ropers
,
Phys. Rev. Lett.
105
,
147601
(
2010
).
11.
M.
Schenk
,
M.
Krüger
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
105
,
257601
(
2010
).
12.
M.
Krüger
,
M.
Schenk
, and
P.
Hommelhoff
,
Nature
475
,
78
(
2011
).
13.
C.
Kealhofer
,
S. M.
Foreman
,
S.
Gerlich
, and
M. A.
Kasevich
,
Phys. Rev. B
86
,
035405
(
2012
).
14.
G.
Herink
,
D. R.
Solli
,
M.
Gulde
, and
C.
Ropers
,
Nature
483
,
190
(
2012
).
15.
M.
Gulde
,
S.
Schweda
,
G.
Storeck
,
M.
Maiti
,
H. K.
Yu
,
A. M.
Wodtke
,
S.
Schafer
, and
C.
Ropers
,
Science
345
,
200
(
2014
).
16.
T.
Juffmann
,
B. B.
Klopfer
,
G. E.
Skulason
,
C.
Kealhofer
,
F.
Xiao
,
S. M.
Foreman
, and
M. A.
Kasevich
,
Phys. Rev. Lett.
115
,
264803
(
2015
).
17.
J.
Vogelsang
,
J.
Robin
,
B. J.
Nagy
,
P.
Dombi
,
D.
Rosenkranz
,
M.
Schiek
,
P.
Groß
, and
C.
Lienau
,
Nano Lett.
15
,
4685
(
2015
).
18.
M.
Krüger
,
C.
Lemell
,
G.
Wachter
,
J.
Burgdoerfer
, and
P.
Hommelhoff
,
J. Phys. B
51
,
172001
(
2018
).
19.
B.
Piglosiewicz
,
S.
Schmidt
,
D. J.
Park
,
J.
Vogelsang
,
P.
Groß
,
C.
Manzoni
,
P.
Farinello
,
G.
Cerullo
, and
C.
Lienau
,
Nat. Photonics
8
,
37
(
2014
).
20.
M.
Müller
,
A.
Paarmann
, and
R.
Ernstorfer
,
Nat. Commun.
5
,
5292
(
2014
).
21.
A. R.
Bainbridge
,
C. W. B.
Myers
, and
W. A.
Bryan
,
Struct. Dyn.
3
,
023612
(
2016
).
23.
G.
Pozzi
,
Optik
77
,
69
(
1987
).
24.
J.
Spence
,
W.
Qian
, and
A.
Melmed
,
Ultramicroscopy
52
,
473
(
1993
).
25.
B.
Cho
,
T.
Ichimura
,
R.
Shimizu
, and
C.
Oshima
,
Phys. Rev. Lett.
92
,
246103
(
2004
).
26.
D.
Ehberger
,
J.
Hammer
,
M.
Eisele
,
M.
Krüger
,
J.
Noe
,
A.
Högele
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
114
,
227601
(
2015
).
27.
J.
Cumings
,
A.
Zettl
, and
M.
McCartney
,
Microsc. Microanal.
10
,
420
(
2004
).
28.
C.-C.
Chang
,
H.-S.
Kuo
,
I.-S.
Hwang
, and
T. T.
Tsong
,
Nanotechnology
20
,
115401
(
2009
).
29.
I.-S.
Hwang
,
C.-C.
Chang
,
C.-H.
Lu
,
S.-C.
Liu
,
Y.-C.
Chang
,
T.-K.
Lee
,
H.-T.
Jeng
,
H.-S.
Kuo
,
C.-Y.
Lin
,
C.-S.
Chang
, and
T. T.
Tsong
,
New J. Phys.
15
,
043015
(
2013
).
30.
P.
Musumeci
,
L.
Cultrera
,
M.
Ferrario
,
D.
Filippetto
,
G.
Gatti
,
M. S.
Gutierrez
,
J. T.
Moody
,
N.
Moore
,
J. B.
Rosenzweig
,
C. M.
Scoby
,
G.
Travish
, and
C.
Vicario
,
Phys. Rev. Lett.
104
,
084801
(
2010
).
31.
R.
Boyd
and
D.
Prato
,
Nonlinear Optics, Nonlinear Optics Series
(
Elsevier Science
,
Amsterdam
,
2008
).
32.
P.
Dombi
,
S. E.
Irvine
,
P.
Rácz
,
M.
Lenner
,
N.
Kroó
,
G.
Farkas
,
A.
Mitrofanov
,
A.
Baltuška
,
T.
Fuji
,
F.
Krausz
, and
A. Y.
Elezzabi
,
Opt. Express
18
,
24206
(
2010
).
33.
C. E.
Mendenhall
and
C. F.
DeVoe
,
Phys. Rev.
51
,
346
(
1937
).
34.
E. W.
Müller
,
Advances in Electronics and Electron Physics
(
Elsevier BV, University Park
,
Pennsylvania
,
1960
), Vol.
13
, pp.
83
179
.
35.
B.
Gault
,
M.
Moody
,
J.
Cairney
, and
S.
Ringer
,
Atom Probe Microscopy, Springer Series in Materials Science
(
Springer
,
New York
,
2012
).
36.
M. S.
Hofmann
,
J. T.
Glückert
,
J.
Noé
,
C.
Bourjau
,
R.
Dehmel
, and
A.
Högele
,
Nat. Nanotechnol.
8
,
502
(
2013
).
37.
M.
Krüger
,
M.
Schenk
,
M.
Förster
, and
P.
Hommelhoff
,
J. Phys. B
45
,
074006
(
2012
).
38.
T.
Latychevskaia
,
Ultramicroscopy
175
,
121
(
2017
).
39.
S.
Tsujino
,
J. Appl. Phys.
124
,
044304
(
2018
).
40.
G.
Möllenstedt
and
H.
Düker
,
Z. Phys.
145
,
377
(
1956
).
41.
U.
Weierstall
,
J.
Spence
,
M.
Stevens
, and
K.
Downing
,
Micron
30
,
335
(
1999
).
42.
H.
Ogawa
,
N.
Arai
,
K.
Nagaoka
,
S.
Uchiyama
,
T.
Yamashita
,
H.
Itoh
, and
C.
Oshima
,
Surf. Sci.
357–358
,
371
(
1996
).
43.
H.
Kiesel
,
A.
Renz
, and
F.
Hasselbach
,
Nature
418
,
392
(
2002
).
44.
J. C. H.
Spence
,
High-Resolution Electron Microscopy
(
Oxford University Press
,
Oxford
,
2013
).
45.
H.
Lichte
and
M.
Lehmann
,
Rep. Prog. Phys.
71
,
016102
(
2008
).
46.
B.
Cook
and
P.
Kruit
,
Appl. Phys. Lett.
109
,
151901
(
2016
).
You do not currently have access to this content.