For many applications, optical frequency combs (OFCs) require a high degree of temporal coherence (narrow linewidth). Commonly, OFCs are generated in nonlinear media from a monochromatic narrow linewidth laser source or from a mode-locked laser pulse, but in all the important mid-infrared (MIR) and terahertz (THz) regions of the spectrum, OFCs can be generated intrinsically by free-running quantum cascade lasers (QCLs) with high efficiency. These combs do not look like conventional OFCs as the phases of each mode are different, and in the temporal domain, OFCs are a seemingly random combination of amplitude- and phase-modulated signals rather than a short pulse. Despite this “pseudo-randomness,” the experimental evidence suggests that the linewidth of a QCL OFC is just as narrow as that of a QCL operating in a single mode. While universally acknowledged, this observation is seemingly not fully understood. In this work, we explicate this fact by deriving the expression for the Schawlow-Townes linewidth of QCL OFCs and offer a transparent physical interpretation based on the orthogonality of laser modes, indicating that despite their very different temporal profiles, MIR and THz QCL OFCs are just as good for most applications as any other OFCs.

1.
T.
Udem
,
J.
Reichert
,
R.
Holzwarth
, and
T. W.
Hänsch
, “
Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser
,”
Phys. Rev. Lett.
82
,
3568
3571
(
1999
).
2.
S. A.
Diddams
,
D. J.
Jones
,
J.
Ye
,
S. T.
Cundiff
,
J. L.
Hall
,
J. K.
Ranka
,
R. S.
Windeler
,
R.
Holzwarth
,
T.
Udem
, and
T. W.
Hänsch
, “
Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb
,”
Phys. Rev. Lett.
84
,
5102
5105
(
2000
).
3.
T. M.
Fortier
,
A.
Bartels
, and
S. A.
Diddams
, “
Octave-spanning Ti: Sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons
,”
Opt. Lett.
31
,
1011
1013
(
2006
).
4.
D. J.
Jones
,
S. A.
Diddams
,
J. K.
Ranka
,
A.
Stentz
,
R. S.
Windeler
,
J. L.
Hall
, and
S. T.
Cundiff
, “
Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis
,”
Science
288
,
635
639
(
2000
).
5.
F. K.
Fatemi
,
J. W.
Lou
, and
T. F.
Carruthers
, “
Frequency comb linewidth of an actively mode-locked fiber laser
,”
Opt. Lett.
29
,
944
946
(
2004
).
6.
P.
Del'Haye
,
A.
Schliesser
,
O.
Arcizet
,
T.
Wilken
,
R.
Holzwarth
, and
T. J.
Kippenberg
, “
Optical frequency comb generation from a monolithic microresonator
,”
Nature
450
,
1214
(
2007
).
7.
T. J.
Kippenberg
,
R.
Holzwarth
, and
S. A.
Diddams
, “
Microresonator based optical frequency combs
,”
Science
332
,
555
559
(
2011
).
8.
C. Y.
Wang
,
T.
Herr
,
P.
Del'Haye
,
A.
Schliesser
,
J.
Hofer
,
R.
Holzwarth
,
T. W.
Hänsch
,
N.
Picqué
, and
T. J.
Kippenberg
, “
Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators
,”
Nat. Commun.
4
,
1345
(
2013
).
9.
T.
Herr
,
K.
Hartinger
,
J.
Riemensberger
,
C. Y.
Wang
,
E.
Gavartin
,
R.
Holzwarth
,
M. L.
Gorodetsky
, and
T. J.
Kippenberg
, “
Universal formation dynamics and noise of Kerr-frequency combs in microresonators
,”
Nat. Photonics
6
,
480
487
(
2012
).
10.
A. G.
Griffith
,
R. K. W.
Lau
,
J.
Cardenas
,
Y.
Okawachi
,
A.
Mohanty
,
R.
Fain
,
Y. H. D.
Lee
,
M.
Yu
,
C. T.
Phare
,
C. B.
Poitras
,
A. L.
Gaeta
, and
M.
Lipson
, “
Silicon-chip mid-infrared frequency comb generation
,”
Nat. Commun.
6
,
6299
(
2015
).
11.
V.
Brasch
,
M.
Geiselmann
,
T.
Herr
,
G.
Lihachev
,
M. H. P.
Pfeiffer
,
M. L.
Gorodetsky
, and
T. J.
Kippenberg
, “
Photonic chip–based optical frequency comb using soliton Cherenkov radiation
,”
Science
351
,
357
360
(
2016
).
12.
K. L.
Vodopyanov
,
E.
Sorokin
,
I. T.
Sorokina
, and
P. G.
Schunemann
, “
Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator
,”
Opt. Lett.
36
,
2275
2277
(
2011
).
13.
I.
Galli
,
F.
Cappelli
,
P.
Cancio
,
G.
Giusfredi
,
D.
Mazzotti
,
S.
Bartalini
, and
P.
De Natale
, “
High-coherence mid-infrared frequency comb
,”
Opt. Express
21
,
28877
28885
(
2013
).
14.
A.
Ruehl
,
A.
Gambetta
,
I.
Hartl
,
M. E.
Fermann
,
K. S. E.
Eikema
, and
M.
Marangoni
, “
Widely-tunable mid-infrared frequency comb source based on difference frequency generation
,”
Opt. Lett.
37
,
2232
2234
(
2012
).
15.
A.
Hugi
,
G.
Villares
,
S.
Blaser
,
H. C.
Liu
, and
J.
Faist
, “
Mid-infrared frequency comb based on a quantum cascade laser
,”
Nature
492
,
229
233
(
2012
).
16.
D.
Burghoff
,
T.-Y.
Kao
,
N.
Han
,
C. W. I.
Chan
,
X.
Cai
,
Y.
Yang
,
D. J.
Hayton
,
J.-R.
Gao
,
J. L.
Reno
, and
Q.
Hu
, “
Terahertz laser frequency combs
,”
Nat. Photonics
8
,
462
467
(
2014
).
17.
J.
Faist
,
F.
Capasso
,
D. L.
Sivco
,
C.
Sirtori
,
A. L.
Hutchinson
, and
A. Y.
Cho
, “
Quantum cascade laser
,”
Science
264
,
553
556
(
1994
).
18.
J. B.
Khurgin
,
Y.
Dikmelik
,
A.
Hugi
, and
J.
Faist
, “
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
,”
Appl. Phys. Lett.
104
,
081118
(
2014
).
19.
G.
Villares
and
J.
Faist
, “
Quantum cascade laser combs: Effects of modulation and dispersion
,”
Opt. Express
23
,
1651
1669
(
2015
).
20.
G.
Villares
,
S.
Riedi
,
J.
Wolf
,
D.
Kazakov
,
M.
Süess
,
P.
Jouy
,
M.
Beck
, and
J.
Faist
, “
Dispersion engineering of quantum cascade laser frequency combs
,”
Optica
3
,
252
258
(
2016
).
21.
D.
Burghoff
,
Y.
Yang
,
D.
Hayton
,
J.
Gao
,
J.
Reno
, and
Q.
Hu
, “
Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs
,”
Opt. Express
23
,
1190
1202
(
2015
).
22.
M.
Singleton
,
P.
Jouy
,
M.
Beck
, and
J.
Faist
, “
Evidence of linear chirp in mid-infrared quantum cascade lasers
,”
Optica
5
,
948
953
(
2018
).
23.
N.
Henry
,
D.
Burghoff
,
Q.
Hu
, and
J. B.
Khurgin
, “
Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions
,”
Opt. Express
26
,
14201
14212
(
2018
).
24.
P.
Tzenov
,
D.
Burghoff
,
Q.
Hu
, and
C.
Jirauschek
, “
Time domain modeling of terahertz quantum cascade lasers for frequency comb generation
,”
Opt. Express
24
,
23232
23247
(
2016
).
25.
G.
Villares
,
A.
Hugi
,
S.
Blaser
, and
J.
Faist
, “
Dual-comb spectroscopy based on quantum-cascade-laser frequency combs
,”
Nat. Commun.
5
,
5192
(
2014
).
26.
Y.
Yang
,
D.
Burghoff
,
D. J.
Hayton
,
J.-R.
Gao
,
J. L.
Reno
, and
Q.
Hu
, “
Terahertz multiheterodyne spectroscopy using laser frequency combs
,”
Optica
3
,
499
502
(
2016
).
27.
A. L.
Schawlow
and
C. H.
Townes
, “
Infrared and optical masers
,”
Phys. Rev.
112
(
6
),
1940
(
1958
).
28.
M.
Lax
, “
Classical noise. V. Noise in self-sustained oscillators
,”
Phys. Rev.
160
,
290
(
1967
).
29.
D. W.
Rush
,
P.-T.
Ho
, and
G. L.
Burdge
, “
The coherence time of a mode-locked pulse train
,”
Opt. Commun.
52
,
41
45
(
1984
).
30.
D. W.
Rush
,
G. L.
Burdge
, and
P.-T.
Ho
, “
The linewidth of a mode-locked semiconductor laser. Caused by spontaneous emission: Experimental comparison to single-mode operation
,”
IEEE J. Quantum Electron.
22
,
2088
2091
(
1986
).
31.
P.-T.
Ho
, “
Phase and amplitude fluctuation a mode-locked laser
,”
IEEE J. Quantum Electron.
21
,
1806
1813
(
1985
).
32.
H. A.
Haus
and
A.
Mecozzi
, “
Noise of mode-locked lasers
,”
IEEE J. Quantum Electron.
29
,
983
995
(
1993
).
33.
L. A.
Jiang
,
M. E.
Grein
,
H. A.
Hermann
, and
E. P.
Ippen
, “
Noise of mode-locked semiconductor lasers
,”
IEEE J. Sel. Top. Quantum Electron.
7
(
2
),
159
166
(
2001
).
34.
F.
Cappelli
,
G.
Villares
,
S.
Riedi
, and
J.
Faist
, “
Intrinsic linewidth of quantum cascade laser frequency combs
,”
Optica
2
,
836
840
(
2015
).
35.
K.
Kurokawa
,
An Introduction to the Theory of Microwave Circuits
(
New York
,
Academic
,
1969
), Chap. 9.
36.
J. A.
Mullen
, “
Background noise in nonlinear oscillators
,”
Proc. IRE
48
,
1467
(
1960
).
37.
C. H.
Henry
, “
Theory of the linewidth of semiconductor lasers
,”
IEEE J. Quantum Electron.
18
,
259
264
(
1982
).
38.
A. E.
Siegman
,
Lasers
(University Science Books Sausalito
,
1986
), Chap. 11.
You do not currently have access to this content.