We propose compact S-vector superprism providing broadband wavelength sensitivity within a/λ = 0.610–0.635, where “a” is the lattice constant, λ is the incident wavelength, and S denotes the Poynting vector. The reported configuration overcomes strong beam divergence and complex beam generation due to the self-collimation ability of the low symmetric primitive photonic crystal (PhC) cells. Analytical calculations of equi-frequency contours, photonic band structures, and group velocity dispersions are performed by solving Maxwell's equations and using the plane wave expansion method. Besides, finite-difference time-domain analyses are also conducted. The designed superprism induces large refracted angle variation for different frequencies when the incident angle is fixed: 4% change of incident frequencies results in approximately 40° deflected angle difference with a maximum 68.9° deflection angle inside the PhC. Meanwhile, for a fixed incident wavelength, a large output variation occurs if the incident angle is altered. Microwave experimental results are found to be in good agreement with the numerical analyses.

1.
S. N.
Tandon
,
M.
Soljačić
,
G. S.
Petrich
,
J. D.
Joannopoulos
, and
L. A.
Kolodziejski
,
Photonics Nanostruct.
3
,
10
(
2005
).
2.
H.
Kosaka
and
T.
Kawashima
,
Phys. Rev. B
58
,
R10096
(
1998
).
3.
T.
Matsumoto
and
T.
Baba
,
IEICE Trans. Electron.
E87-C
,
393
(
2004
).
4.
T.
Matsumoto
,
S.
Fujita
, and
T.
Baba
,
Opt. Express
13
,
10768
(
2005
).
5.
C.
Luo
,
M.
Soljacić
, and
J. D.
Joannopoulos
,
Opt. Lett.
29
,
745
(
2004
).
6.
J.
Dellinger
,
D.
Bernier
,
B.
Cluzel
,
X.
Le Roux
,
A.
Lupu
,
F.
de Fornel
, and
E.
Cassan
,
Opt. Lett.
36
,
1074
(
2011
).
7.
T.
Baba
and
T.
Matsumoto
,
Appl. Phys. Lett.
81
,
2325
(
2002
).
8.
M. J.
Steel
,
R.
Zoli
,
C.
Grillet
,
R. C.
McPhedran
,
C.
Martijn De Sterke
,
A.
Norton
,
P.
Bassi
, and
B. J.
Eggleton
,
Phys. Rev. E
71
,
056608
(
2005
).
9.
B.
Gao
,
Z.
Shi
, and
R. W.
Boyd
,
Opt. Express
23
,
6491
(
2015
).
10.
S.
Pahlavan
and
V.
Ahmadi
,
IEEE Photonics Technol. Lett.
29
,
511
(
2017
).
11.
M.
Turduev
,
I. H.
Giden
, and
H.
Kurt
,
Photonics Nanostruct.
11
,
241
(
2013
).
12.
M.
Plihal
,
A.
Shambrook
,
A. A.
Maradudin
, and
P.
Sheng
,
Opt. Commun.
80
,
199
(
1991
).
13.
X. H.
Wang
,
B. Y.
Gu
,
Z. Y.
Li
, and
G. Z.
Yang
,
Phys. Rev. B
60
,
11417
(
1999
).
14.
K. M.
Leung
and
Y. F.
Liu
,
Phys. Rev. Lett.
65
,
2646
(
1990
).
15.
MATLAB and Statistics Toolbox Release
(
Mathworks, Inc.
,
Natic, MA
,
2015
).
16.
Lumerical FDTD Solutions, Inc.
, http://www.lumerical.com for high performance FDTD-method Maxwell solver for the design, analysis and optimization of nanophotonic devices, processes and materials.
17.
A. I.
Cǎbuz
,
E.
Centeno
, and
D.
Cassagne
,
Appl. Phys. Lett.
84
,
2031
(
2004
).
18.
T.
Matsumoto
,
T.
Asatsuma
, and
T.
Baba
,
Appl. Phys. Lett.
91
,
091117
(
2007
).
19.
W.
Li
,
X. G.
Zhang
,
X. L.
Lin
, and
X. Y.
Jiang
,
Opt. Lett.
39
,
4486
(
2014
).

Supplementary Material

You do not currently have access to this content.