Optical components based on metasurfaces (metalenses) offer an alternative methodology for microlens arrays. In particular, metalens arrays have the potential of being monolithically integrated with infrared focal plane arrays (IR FPAs) to increase the operating temperature and sensitivity of the latter. In this work, we demonstrate a type of transmissive metalens that focuses the incident light (λ = 3–5 μm) on the detector plane after propagating through the substrate, i.e., solid-immersion type of focusing. The metalens is fabricated by etching the backside of the detector substrate material (GaSb here), making this approach compatible with the architecture of back-illuminated FPAs. In addition, our designs work for all incident polarizations. We fabricate a 10 × 10 metalens array that proves the scalability of this approach for FPAs. In the future, these solid-immersion metalenses arrays will be monolithically integrated with IR FPAs.

1.
A.
Rogalski
,
Infrared Detectors
, 2nd ed. (
CRC Press
,
2011
).
2.
F.
Abolmaali
,
A.
Brettin
,
A.
Green
,
N. I.
Limberopoulos
,
A. M.
Urbas
, and
V. N.
Astratov
, “
Photonic jets for highly efficient mid-IR focal plane arrays with large angle‐of‐view
,”
Opt. Express
25
,
31174
(
2017
).
3.
S.
Chen
,
X.
Yi
,
L.
Kong
,
M.
He
, and
H.
Wang
, “
Monolithic integration technique for microlens arrays with infrared focal plane arrays
,”
Infrared Phys. Technol.
43
,
109
(
2002
).
4.
C.
Du
,
L.
Guo
,
Y. R.
Wang
,
L.
Zhou
,
G. L.
Sun
,
J.
Zhang
,
X. D.
Lin
,
Z.
Li
, and
Z.
Zhou
, “
Method for improving performance of IR focal plane array using microlens array
,”
Proc. SPIE
3099
,
107
(
1997
).
5.
J.
Bai
,
W.
Hu
,
N.
Guo
,
W.
Lei
,
Y.
Lv
,
X.
Zhang
,
J.
Si
,
X.
Chen
, and
W.
Lu
, “
Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses
,”
J. Electron. Mater.
43
,
2795
(
2014
).
6.
O.
Akın
and
H. V.
Demir
, “
Mid-wave infrared metasurface microlensed focal plane array for optical crosstalk suppression
,”
Opt. Express
23
,
27020
(
2015
).
7.
J.-H.
Yan
,
W.
Ou
,
Y.
Ou
, and
L.-J.
Zhao
, “
Design and fabrication of novel microlens-micromirrors array for infrared focal plane array
,”
Microwave Opt. Technol. Lett.
54
,
879
(
2012
).
8.
S.
Chen
,
X.
Yi
,
Y.
Li
,
M.
He
,
L.
Kong
, and
H.
Ma
, “
Hybrid integration between long focus microlens array and IR detector array
,”
Int. J. Infrared Millimeter Waves
22
,
393
(
2001
).
9.
K. W.
Allen
,
F.
Abolmaali
,
J. M.
Duran
,
G.
Ariyawansa
,
N. I.
Limberopoulos
,
A. M.
Urbas
, and
V. N.
Astratov
, “
Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres
,”
Appl. Phys. Lett.
108
,
241108
(
2016
).
10.
A.
Soibel
,
S. A.
Keo
,
A.
Fisher
,
C. J.
Hill
,
E.
Luong
,
D. Z.
Ting
,
S. D.
Gunapala
,
D.
Lubyshev
,
Y.
Qiu
,
J. M.
Fastenau
, and
A. W. K.
Liu
, “
High operating temperature nBn detector with monolithically integrated microlens
,”
Appl. Phys. Lett.
112
,
41105
(
2018
).
11.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J.-P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
,
333
(
2011
).
12.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mater.
13
,
139
(
2014
).
13.
M.
Khorasaninejad
and
F.
Capasso
, “
Metalenses: Versatile multifunctional photonic components
,”
Science
358
,
1
(
2017
).
14.
S.
Zhang
,
M.-H.
Kim
,
F.
Aieta
,
A.
She
,
T.
Mansuripur
,
I.
Gabay
,
M.
Khorasaninejad
,
D.
Rousso
,
X.
Wang
,
M.
Troccoli
 et al., “
High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays
,”
Opt. Express
24
,
18024
(
2016
).
15.
A.
She
,
S.
Zhang
,
S.
Shian
,
D. R.
Clarke
, and
F.
Capasso
, “
Large area metalenses: Design, characterization, and mass manufacturing
,”
Opt. Express
26
,
1573
(
2018
).
16.
A.
She
,
S.
Zhang
,
S.
Shian
,
D. R.
Clarke
, and
F.
Capasso
, “
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift
,”
Sci. Adv.
4
,
eaap9957
(
2018
).
17.
A.
Arbabi
,
Y.
Horie
,
A. J.
Ball
,
M.
Bagheri
, and
A.
Faraon
, “
Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays
,”
Nat. Commun.
6
,
7069
(
2015
).
18.
H.-H.
Hsiao
,
C. H.
Chu
, and
D. P.
Tsai
, “
Fundamentals and applications of metasurfaces
,”
Small Methods
1
,
1600064
(
2017
).
19.
X.
Ni
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Metasurface holograms for visible light
,”
Nat. Commun.
4
,
2807
(
2013
).
20.
Z.
Shi
,
M.
Khorasaninejad
,
Y.-W.
Huang
,
C.
Roques-Carmes
,
A. Y.
Zhu
,
W. T.
Chen
,
V.
Sanjeev
,
Z. W.
Ding
,
M.
Tamagnone
,
K.
Chaudhary
 et al., “
Single-layer metasurface with controllable multiwavelength functions
,”
Nano Lett.
18
,
2420
(
2018
).
21.
S. B.
Rafol
,
A.
Soibel
,
A.
Khoshakhlagh
,
J.
Nguyen
,
J. K.
Liu
,
J. M.
Mumolo
,
S. A.
Keo
,
L.
Hoglund
,
D. Z.
Ting
, and
S. D.
Gunapala
, “
Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array
,”
IEEE J. Quantum Electron.
48
,
878
(
2012
).
22.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
, “
Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
,”
Science
352
,
1190
(
2016
).
23.
W. T.
Chen
,
A. Y.
Zhu
,
V.
Sanjeev
,
M.
Khorasaninejad
,
Z.
Shi
,
E.
Lee
, and
F.
Capasso
, “
A broadband achromatic metalens for focusing and imaging in the visible
,”
Nat. Nanotechnol.
13
,
220
(
2018
).
24.
S.
Wang
,
P. C.
Wu
,
V. C.
Su
,
Y. C.
Lai
,
M. K.
Chen
,
H. Y.
Kuo
,
B. H.
Chen
,
Y. H.
Chen
,
T. T.
Huang
,
J. H.
Wang
 et al., “
A broadband achromatic metalens in the visible
,”
Nat. Nanotechnol.
13
,
227
(
2018
).
25.
N. M.
Estakhri
and
A.
Alù
, “
Recent progress in gradient metasurfaces
,”
J. Opt. Soc. Am. B
33
,
A21
(
2016
).

Supplementary Material

You do not currently have access to this content.