We have developed a method of terahertz (THz) solid immersion (SI) microscopy for continuous-wave reflection-mode imaging of soft biological tissues with a sub-wavelength spatial resolution. In order to achieve strong reduction in the dimensions of the THz beam caustic, an electromagnetic wave is focused into the evanescent field volume behind a medium with a high refractive index. We have experimentally demonstrated a 0.15λ-resolution of the proposed imaging modality at λ = 500 μm, which is beyond the Abbe diffraction limit and represents a considerable improvement over the previously-reported arrangements of SI imaging setups. The proposed technique does not involve any sub-wavelength near-field probes and diaphragms, thus, avoiding the THz beam attenuation due to such elements. We have applied the developed method for THz imaging of various soft tissues: a plant leaf blade, cell spheroids, and tissues of the breast ex vivo. Our THz images clearly reveal sub-wavelength features in tissues, therefore, promising applications of THz SI microscopy in biology and medicine.

1.
B.
Hu
and
M.
Nuss
,
Opt. Lett.
20
,
1716
(
1995
).
2.
D. M.
Mittleman
,
S.
Hunsche
,
L.
Boivin
, and
M. C.
Nuss
,
Opt. Lett.
22
,
904
(
1997
).
3.
X.
Yang
,
X.
Zhao
,
K.
Yang
,
Y.
Liu
,
Y.
Liu
,
W.
Fu
, and
Y.
Luo
,
Trends Biotechnol.
34
,
810
(
2016
).
4.
V.
Wallace
,
A.
Fitzgerald
,
S.
Shankar
,
N.
Flanagan
,
R.
Pye
,
J.
Cluff
, and
D.
Arnone
,
Br. J. Dermatol.
151
,
424
(
2004
).
5.
P.
Ashworth
,
E.
Pickwell-MacPherson
,
E.
Provenzano
,
S.
Pinder
,
A.
Purushotham
,
M.
Pepper
, and
V.
Wallace
,
Opt. Express
17
,
12444
(
2009
).
6.
Y.
Ji
,
S.
Oh
,
S.-G.
Kang
,
J.
Heo
,
S.-H.
Kim
,
Y.
Choi
,
S.
Song
,
H.
Son
,
S.
Kim
,
J.
Lee
,
S.
Haam
,
Y.
Huh
,
J.
Chang
,
C.
Joo
, and
J.-S.
Suh
,
Sci. Rep.
6
,
36040
(
2016
).
7.
N.
Chernomyrdin
,
M.
Frolov
,
S.
Lebedev
,
I.
Reshetov
,
I.
Spektor
,
V.
Tolstoguzov
,
V.
Karasik
,
A.
Khorokhorov
,
K.
Koshelev
,
A.
Schadko
,
S.
Yurchenko
, and
K.
Zaytsev
,
Rev. Sci. Instrum.
88
,
014703
(
2017
).
8.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge University Press
,
2012
).
9.
Y.
Zhang
,
W.
Zhou
,
X.
Wang
,
Y.
Cui
, and
W.
Sun
,
Strain
44
,
380
(
2008
).
10.
V.
Krozer
,
T.
Loffler
,
J.
Dall
,
A.
Kusk
,
F.
Eichhorn
,
R. K.
Olsson
,
J. D.
Buron
,
P. U.
Jepsen
,
V.
Zhurbenko
, and
T.
Jensen
,
IEEE Trans. Microwave Theory Tech.
58
,
2027
(
2010
).
11.
H.
Guerboukha
,
K.
Nallappan
, and
M.
Skorobogatiy
,
Optica
5
,
109
(
2018
).
12.
H.-T.
Chen
,
R.
Kersting
, and
G.
Cho
,
Appl. Phys. Lett.
83
,
3009
(
2003
).
13.
A.
Huber
,
F.
Keilmann
,
J.
Wittborn
,
J.
Aizpurua
, and
R.
Hillenbrand
,
Nano Lett.
8
,
3766
(
2008
).
14.
P.
Dean
,
O.
Mitrofanov
,
J.
Keeley
,
I.
Kundu
,
L.
Li
,
E.
Linfield
, and
A.
Giles Davies
,
Appl. Phys. Lett.
108
,
091113
(
2016
).
15.
R.
Degl'Innocenti
,
R.
Wallis
,
B.
Wei
,
L.
Xiao
,
S.
Kindness
,
O.
Mitrofanov
,
P.
Braeuninger-Weimer
,
S.
Hofmann
,
H.
Beere
, and
D.
Ritchie
,
ACS Photonics
4
,
2150
(
2017
).
16.
C.
Liewald
,
S.
Mastel
,
J.
Hesler
,
A.
Huber
,
R.
Hillenbrand
, and
F.
Keilmann
,
Optica
5
,
159
(
2018
).
17.
B.
Lukyanchuk
,
R.
Paniagua-Dominguez
,
I.
Minin
,
O.
Minin
, and
Z.
Wang
,
Opt. Mater. Express
7
,
1820
(
2017
).
18.
H.
Nguyen Pham
,
S.
Hisatake
,
O.
Minin
,
T.
Nagatsuma
, and
I.
Minin
,
APL Photonics
2
,
056106
(
2017
).
19.
L.
Yue
,
B.
Yan
,
J.
Monks
,
R.
Dhama
,
Z.
Wang
,
O.
Minin
, and
I.
Minin
,
J. Infrared, Millimeter, Terahertz Waves
39
,
546
(
2018
).
20.
S.
Mansfield
and
G.
Kino
,
Appl. Phys. Lett.
57
,
2615
(
1990
).
21.
G.
Lerman
,
A.
Israel
, and
A.
Lewis
,
Appl. Phys. Lett.
89
,
223122
(
2006
).
22.
S.
Ippolito
,
S.
Thorne
,
M.
Eraslan
,
B.
Goldberg
,
M.
Unlu
, and
Y.
Leblebici
,
Appl. Phys. Lett.
84
,
4529
(
2004
).
23.
F.
Koklu
,
J.
Quesnel
,
A.
Vamivakas
,
S.
Ippolito
,
B.
Goldberg
, and
M.
Unlu
,
Opt. Express
16
,
9501
(
2008
).
24.
A.
Pimenov
and
A.
Loidl
,
Appl. Phys. Lett.
83
,
4122
(
2003
).
25.
B.
Gompf
,
M.
Gerull
,
T.
Muller
, and
M.
Dressel
,
Infrared Phys. Technol.
49
,
128
(
2006
).
26.
N.
Chernomyrdin
,
A.
Schadko
,
S.
Lebedev
,
V.
Tolstoguzov
,
V.
Kurlov
,
I.
Reshetov
,
I.
Spektor
,
M.
Skorobogatiy
,
S.
Yurchenko
, and
K.
Zaytsev
,
Appl. Phys. Lett.
110
,
221109
(
2017
).
27.
D.
Fletcher
,
K.
Crozier
,
C.
Quate
,
G.
Kino
,
K.
Goodson
,
D.
Simanovskii
, and
D.
Palanker
,
Appl. Phys. Lett.
78
,
3589
(
2001
).
28.
D.
Fletcher
,
K.
Crozier
,
C.
Quate
,
G.
Kino
,
K.
Goodson
,
D.
Simanovskii
, and
D.
Palanker
,
Appl. Phys. Lett.
77
,
2109
(
2000
).
29.
M.
Skorobogatiy
,
Nanostructured and Subwavelength Waveguides: Fundamentals and Applications
(
Wiley
,
2012
).
30.
W.
Fan
,
B.
Yan
,
Z.
Wang
, and
L.
Wu
,
Sci. Adv.
2
,
e1600901
(
2016
).
31.
K.
Karrai
,
X.
Lorenz
, and
L.
Novotny
,
Appl. Phys. Lett.
77
,
3459
(
2000
).
32.
T.
Milster
,
J.
Jo
, and
K.
Hirota
,
Appl. Opt.
38
,
5046
(
1999
).
33.
E.
Koudan
,
J.
Korneva
,
P.
Karalkin
,
I.
Gladkaya
,
A.
Gryadunova
,
V.
Mironov
,
Y.
Khesuani
, and
E.
Bulanova
,
3D Print. Addit. Manuf.
4
,
53
(
2017
).
34.
E.
Pickwell
,
B.
Cole
,
A.
Fitzgerald
,
V.
Wallace
, and
M.
Pepper
,
Appl. Phys. Lett.
84
,
2190
(
2004
).
35.
V.
Tuchin
,
Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics
, Third Edition (
SPIE Press
,
2015
).
You do not currently have access to this content.