In many InGaN/GaN single photon emitting structures, significant contamination of the single photon stream by background emission is observed. Here, utilizing InGaN/GaN quantum dots incorporated in mesoporous distributed Bragg reflectors (DBRs) within micropillars, we demonstrate methods for the reduction of this contamination. Using the resulting devices, autocorrelation measurements were performed using a Hanbury Brown and Twiss set-up, and thus, we report a working quantum dot device in the III-nitride system utilizing mesoporous DBRs. Uncorrected g(2)(0) autocorrelation values are shown to be significantly improved when excited with a laser at longer wavelengths and lower powers. Through this optimization, we report a g(2)(0) value from a blue-emitting InGaN/GaN quantum dot of 0.126 ± 0.003 without any form of background correction.

1.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
, “
Quantum cryptography
,”
Rev. Mod. Phys.
74
,
145
(
2002
).
2.
B.
Lounis
and
M.
Orrit
, “
Single-photon sources
,”
Rep. Prog. Phys.
68
,
1129
(
2005
).
3.
P.
Kok
,
W. J.
Munro
,
K.
Nemoto
,
T. C.
Ralph
,
J. P.
Dowling
, and
G. J.
Milburn
, “
Linear optical quantum computing with photonic qubits
,”
Rev. Mod. Phys.
79
,
135
(
2007
).
4.
J.
Rarity
,
P.
Owens
, and
P.
Tapster
, “
Quantum random-number generation and key sharing
,”
J. Mod. Opt.
41
,
2435
(
1994
).
5.
F.
Diedrich
and
H.
Walther
, “
Nonclassical radiation of a single stored ion
,”
Phys. Rev. Lett.
58
,
203
(
1987
).
6.
B.
Lounis
and
W. E.
Moerner
, “
Single photons on demand from a single molecule at room temperature
,”
Nature
407
,
491
(
2000
).
7.
A.
Kuhn
,
M.
Hennrich
, and
G.
Rempe
, “
Deterministic single-photon source for distributed quantum networking
,”
Phys. Rev. Lett.
89
,
067901
(
2002
).
8.
C.
Kurtsiefer
,
S.
Mayer
,
P.
Zarda
, and
H.
Weinfurter
, “
Stable solid-state source of single photons
,”
Phys. Rev. Lett.
85
,
290
(
2000
).
9.
P.
Michler
,
A.
Imamoglu
,
M. D.
Mason
,
P. J.
Carson
,
G. F.
Strouse
, and
S. K.
Burrato
, “
Quantum correlation among photons from a single quantum dot at room temperature
,”
Nature
406
,
968
(
2000
).
10.
P.
Michler
,
A.
Kiraz
,
C.
Becher
,
W. V.
Schoenfeld
,
P. M.
Petroff
,
L.
Zhang
,
E.
Hu
, and
A.
Imamoglu
, “
A quantum dot single-photon turnstile device
,”
Science
290
,
2282
(
2000
).
11.
S.
Nakamura
and
S. F.
Chichibu
,
Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes
(
Taylor and Francis
,
London
,
2000
).
12.
M.
Rau
,
T.
Heindel
,
S.
Unsleber
,
T.
Braun
,
J.
Fischer
,
S.
Frick
,
S.
Nauerth
,
C.
Schneider
,
G.
Vest
,
S.
Reitzenstein
,
M.
Kamp
,
A.
Forchel
,
S.
Höfling
, and
H.
Weinfurter
, “
Free space quantum key distribution over 500 metres using electrically driven quantum dot single-photon sources—A proof of principle experiment
,”
New J. Phys.
16
,
043003
(
2014
).
13.
S.
Deshpande
,
T.
Frost
,
A.
Hazari
, and
P.
Battacharya
, “
Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot
,”
Appl. Phys. Lett.
105
,
141109
(
2014
).
14.
T.
Wang
,
T. J.
Puchtler
,
T.
Zhu
,
J. C.
Jarman
,
L. P.
Nuttall
, and
R. A.
Taylor
, “
Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots
,”
Nanoscale
9
(
27
),
9421
(
2017
).
15.
M.
Holmes
,
S.
Kako
,
K.
Choi
,
M.
Arita
, and
Y.
Arakawa
, “
Single photons from a hot solid-state emitter at 350 K
,”
ACS Photonics
3
(
4
),
543
(
2016
).
16.
S.
Buckley
,
K.
Rivoire
, and
J.
Vučković
, “
Engineered quantum dot single-photon sources
,”
Rep. Prog. Phys.
75
,
126503
(
2012
).
17.
T.
Müller
,
J.
Skiba-Szymanska
,
A. B.
Krysa
,
J.
Huwer
,
M.
Felle
,
M.
Anderson
,
R. M.
Stevenson
,
J.
Heffernan
,
D. A.
Richie
, and
A. J.
Shields
, “
A quantum light-emitting diode for the standard telecom window around 1,550 nm
,”
Nat. Commun.
9
,
862
(
2018
).
18.
O.
Gazzano
,
S.
Michaelis de Vasconcellos
,
C.
Arnold
,
A.
Nowak
,
E.
Galopin
,
I.
Sagnes
,
L.
Lanco
,
A.
Lemaître
, and
P.
Senellart
, “
Bright solid-state sources of indistinguishable single photons
,”
Nat. Commun.
4
,
1425
(
2013
).
19.
T.
Someya
and
Y.
Arakawa
, “
Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition
,”
Appl. Phys. Lett.
73
,
3653
(
1998
).
20.
N.
Nakada
,
H.
Ishikawa
,
T.
Egawa
,
T.
Jimbo
, and
M.
Umeno
, “
MOCVD growth of high reflective GaN/AlGaN distributed Bragg reflectors
,”
J. Cryst. Growth
237
,
961
(
2002
).
21.
C.
Kruse
,
H.
Dartsch
,
T.
Aschenbrenner
,
S.
Figge
, and
D.
Hommel
, “
Growth and characterization of nitride-based distributed Bragg reflectors
,”
Phys. Status Solidi B
248
,
1748
(
2011
).
22.
J.-F.
Carlin
and
M.
Ilegems
, “
High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN
,”
Appl. Phys. Lett.
83
,
668
(
2003
).
23.
T.
Zhu
,
Y.
Liu
,
T.
Ding
,
W. Y.
Fu
,
J.
Jarman
,
C. X.
Ren
,
R. V.
Kumar
, and
R. A.
Oliver
, “
Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification
,”
Sci. Rep.
7
,
45344
(
2017
).
24.
R. A.
Oliver
,
G. A. D.
Briggs
,
M. J.
Kappers
,
C. J.
Humphreys
,
S.
Yasin
,
J. H.
Rice
,
J. D.
Smith
, and
R. A.
Taylor
, “
InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal
,”
Appl. Phys. Lett.
83
,
755
(
2003
).
25.
T.
Zhu
,
F.
Oehler
,
B. P. L.
Reid
,
R. M.
Emery
,
R. A.
Taylor
,
M. J.
Kappers
, and
R. A.
Oliver
, “
Non-polar (11-20) InGaN quantum dots with short exciton lifetimes grown by metal-organic vapor phase epitaxy
,”
Appl. Phys. Lett.
102
,
251905
(
2013
).
26.
S.
Li
and
A.
Waag
, “
GaN based nanorods for solid state lighting
,”
J. Appl. Phys.
111
,
071101
(
2012
).
27.
S.
Kako
,
M.
Holmes
,
S.
Sergent
,
M.
Bürger
,
D. J.
As
, and
Y.
Arakawa
, “
Single-photon emission from cubic GaN quantum dots
,”
Appl. Phys. Lett.
104
,
011101
(
2014
).
28.
M.
Holmes
,
S.
Kako
,
K.
Choi
,
M.
Arita
, and
Y.
Arakawa
, “
Spectral diffusion and its influence on the emission linewidths of site-controlled GaN nanowire quantum dots
,”
Phys. Rev. B
92
,
115447
(
2015
).
You do not currently have access to this content.