Reducing the lattice thermal conductivity (κL) comprises one of the crucial aspects of thermoelectric research. Ternary intermetallic half Heusler compounds have revealed properties promising for thermoelectric applications. Studies have shown that self doping with Ni in Ni based half Heuslers leads to unprecedented lowering in the κL. Although the underlying physical mechanisms have not been explored in detail, with ZrNiSn as a case study, we experimentally investigate the change in κL with increase in the Ni concentration in Ni based n-type half Heusler alloys. We observe that at excess Ni doping of 3% in the half Heusler lattice, the thermal conductivity reduces by more than 60%. Our density functional theory based analysis on the ongoing phenomena reveals that at ultralow Ni doping, the localized modes of the antisite Ni defect hybridize with the acoustic modes and this plays the most dominant role in scattering of the thermal phonons leading to significant lowering in κL. Our theoretical analysis can be employed for predicting a suitable dopants that may reduce the κL prior to the synthesis of the compound in the laboratory.

1.
J.
Yang
,
H.
Li
,
T.
Wu
,
W.
Zhang
,
L.
Chen
, and
J.
Yang
,
Adv. Funct. Mater.
18
,
2880
(
2008
).
2.
S.
Chen
and
Z.
Ren
,
Mater. Today
16
,
387
(
2013
).
3.
T.
Zhu
,
C.
Fu
,
H.
Xie
,
Y.
Liu
, and
X.
Zhao
,
Adv. Energy Mater.
5
,
1500588
(
2015
).
4.
C.
Fu
,
S.
Bai
,
Y.
Liu
,
Y.
Tang
,
L.
Chen
,
X.
Zhao
, and
T.
Zhu
,
Nat. Commun.
6
,
8144
(
2015
).
5.
W. G.
Zeier
,
J.
Schmitt
,
G.
Hautier
,
U.
Aydemir
,
Z.
Gibbs
,
C.
Felser
, and
G. J.
Snyder
,
Nat. Rev. Mater.
1
,
16032
(
2016
).
6.
P.
Hołuj
,
C.
Euler
,
B.
Balke
,
U.
Kolb
,
G.
Fiedler
,
M. M.
Müller
,
T.
Jaeger
,
E.
Chávez Angel
,
P.
Kratzer
, and
G.
Jakob
,
Phys. Rev. B
92
,
125436
(
2015
).
7.
C.
Uher
,
J.
Yang
,
S.
Hu
,
D. T.
Morelli
, and
G. P.
Meisner
,
Phys. Rev. B
59
,
8615
(
1999
).
8.
G.
Joshi
,
X.
Yan
,
H.
Wang
,
W.
Liu
,
G.
Chen
, and
Z.
Ren
,
Adv. Energy Mater.
1
,
643
(
2011
).
9.
J.
Zhang
,
X.
Zhang
, and
Y.
Wang
,
Sci. Rep.
7
,
14590
(
2017
).
10.
N. S.
Chauhan
,
S.
Bathula
,
A.
Vishwakarma
,
R.
Bhardwaj
,
B.
Gahtori
,
A.
Kumar
, and
A.
Dhar
,
ACS Appl. Energy Mater.
1
,
757
764
(
2018
).
11.
W.
Xie
,
A.
Weidenkaff
,
X.
Tang
,
Q.
Zhang
,
J.
Poon
, and
T. M.
Tritt
,
Nanomaterials
2
,
379
(
2012
).
12.
G.
Rogl
,
P.
Sauerschnig
,
Z.
Rykavets
,
V.
Romaka
,
P.
Heinrich
,
B.
Hinterleitner
,
A.
Grytsiv
,
E.
Bauer
, and
P.
Rogl
,
Acta Mater.
131
,
336
(
2017
).
13.
H.
Xie
,
H.
Wang
,
C.
Fu
,
Y.
Liu
,
G. J.
Snyder
,
X.
Zhao
, and
T.
Zhu
,
Sci. Rep
4
,
6888
(
2014
).
14.
W.
Jeitschko
,
Metall. Mater. Trans. B
1
,
3159
(
1970
).
15.
S.
Öğüt
and
K. M.
Rabe
,
Phys. Rev. B
51
,
10443
(
1995
).
16.
T.
Graf
,
C.
Felser
, and
S. S.
Parkin
,
Prog. Solid State Chem.
39
,
1
(
2011
).
17.
S.
Bhattacharya
,
M. J.
Skove
,
M.
Russell
,
T. M.
Tritt
,
Y.
Xia
,
V.
Ponnambalam
,
S. J.
Poon
, and
N.
Thadhani
,
Phys. Rev. B
77
,
184203
(
2008
).
18.
V.
Kocevski
and
C.
Wolverton
,
Chem. Mater.
29
(21),
9386
9398
(
2017
).
19.
J.
He
,
M.
Amsler
,
Y.
Xia
,
S. S.
Naghavi
,
V. I.
Hegde
,
S.
Hao
,
S.
Goedecker
,
V.
Ozoliņš
, and
C.
Wolverton
,
Phys. Rev. Lett.
117
,
046602
(
2016
).
20.
J.
Carrete
,
W.
Li
,
N.
Mingo
,
S.
Wang
, and
S.
Curtarolo
,
Phys. Rev. X
4
,
011019
(
2014
).
21.
G.
Xing
,
J.
Sun
,
Y.
Li
,
X.
Fan
,
W.
Zheng
, and
D. J.
Singh
,
Phys. Rev. Mater.
1
,
065405
(
2017
).
22.
C.
Yu
,
T.-J.
Zhu
,
R.-Z.
Shi
,
Y.
Zhang
,
X.-B.
Zhao
, and
J.
He
,
Acta Mater.
57
,
2757
(
2009
).
23.
Y.
Liu
,
P.
Sahoo
,
J. P.
Makongo
,
X.
Zhou
,
S.-J.
Kim
,
H.
Chi
,
C.
Uher
,
X.
Pan
, and
P. F.
Poudeu
,
J. Am. Chem. Soc.
135
,
7486
(
2013
).
24.
J. P.
Makongo
,
D. K.
Misra
,
X.
Zhou
,
A.
Pant
,
M. R.
Shabetai
,
X.
Su
,
C.
Uher
,
K. L.
Stokes
, and
P. F.
Poudeu
,
J. Am. Chem. Soc.
133
,
18843
(
2011
).
25.
A.
Bhardwaj
,
N.
Chauhan
,
B.
Sancheti
,
G.
Pandey
,
T.
Senguttuvan
, and
D.
Misra
,
Phys. Chem. Chem. Phys.
17
,
30090
(
2015
).
26.
D. T.
Do
,
S. D.
Mahanti
, and
J. J.
Pulikkoti
,
J. Phys.: Condens. Matter
26
,
275501
(
2014
).
27.
C. S.
Birkel
,
J. E.
Douglas
,
B. R.
Lettiere
,
G.
Seward
,
N.
Verma
,
Y.
Zhang
,
T. M.
Pollock
,
R.
Seshadri
, and
G. D.
Stucky
,
Phys. Chem. Chem. Phys.
15
,
6990
(
2013
).
28.
A.
Page
,
C.
Uher
,
P. F.
Poudeu
, and
A.
Van der Ven
,
Phys. Rev. B
92
,
174102
(
2015
).
29.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
30.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
31.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
33.
34.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
35.
M.
Asen-Palmer
,
K.
Bartkowski
,
E.
Gmelin
,
M.
Cardona
,
A. P.
Zhernov
,
A. V.
Inyushkin
,
A.
Taldenkov
,
V. I.
Ozhogin
,
K. M.
Itoh
, and
E. E.
Haller
,
Phys. Rev. B
56
,
9431
(
1997
).
36.
37.
Y.
Zhang
,
E.
Skoug
,
J.
Cain
,
V.
Ozoliņš
,
D.
Morelli
, and
C.
Wolverton
,
Phys. Rev. B
85
,
054306
(
2012
).
38.
P.
Sauerschnig
,
A.
Grytsiv
,
J.
Vrestal
,
V.
Romaka
,
B.
Smetana
,
G.
Giester
,
E.
Bauer
, and
P.
Rogl
,
J. Alloys Compd.
742
,
1058
1082
(
2017
).
39.
V.
Romaka
,
P.
Rogl
,
L.
Romaka
,
Y.
Stadnyk
,
A.
Grytsiv
,
O.
Lakh
, and
V.
Krayovskii
,
Intermetallics
35
,
45
(
2013
).
40.
H.-S.
Kim
,
Z. M.
Gibbs
,
Y.
Tang
,
H.
Wang
, and
G. J.
Snyder
,
APL Mater.
3
,
041506
(
2015
).
41.

Although κel shows a dip at x = 0.05 (see supplementary material), but the magnitude of this plunge is much lower (1/10th) in magnitude than that observed in κ.

42.
H.
Xie
,
H.
Wang
,
Y.
Pei
,
C.
Fu
,
X.
Liu
,
G. J.
Snyder
,
X.
Zhao
, and
T.
Zhu
,
Adv. Funct. Mater.
23
,
5123
(
2013
).
43.
D.
Wu
,
A. S.
Petersen
, and
S. J.
Poon
,
AIP Adv.
3
,
082116
(
2013
).

Supplementary Material

You do not currently have access to this content.