The concept of the tricolor superstructure (TCS), which is a triple-layer stack structure containing two types of high dielectric constant (high-k) layers (designated HK1 and HK2) and a SiO2 layer, is proposed to control the moment and the polarity of the interface dipole layer that are induced at the high-k/SiO2 interfaces. The interface dipole layer is formed by oxygen ion migration from the layer with higher oxygen areal density (σ) to that with lower σ. When the two high-k materials are selected with the order of σHK1 > σSiO2 > σHK2 in a SiO2/HK2/HK1/SiO2 TCS, the dipole directions of the interface dipole layers at the SiO2/HK2 and the HK1/SiO2 interfaces are aligned. Additionally, in the transposed SiO2/HK1/HK2/SiO2 TCS, the total polarity is reversed. The concept is demonstrated using Al2O3 and Y2O3 layers because they offer the order of σAl2O3 > σSiO2 > σY2O3. The two stacking sequence samples composed of SiO2/Y2O3/Al2O3/SiO2 and SiO2/Al2O3/Y2O3/SiO2 that were fabricated using superlattice technique by pulsed laser deposition obviously show opposite dipole polarities. Increasing repetition of the deposited TCS unit also causes the dipole moments to increase systematically. The TCS technique enables control of the properties of the interface dipole layer at high-k/SiO2 interfaces in amorphous systems.

1.
L.
Lin
and
J.
Robertson
,
J. Appl. Phys.
109
,
094502
(
2011
).
2.
X. P.
Wang
,
M. F.
Li
,
C.
Ren
,
X. F.
Yu
,
C.
Shen
,
H. H.
Ma
,
A.
Chin
,
C. X.
Zhu
,
J.
Ning
,
M. B.
Yu
, and
D. L.
Kwong
,
IEEE Electron Device Lett.
27
,
31
(
2006
).
3.
X. P.
Wang
,
A. E.
Lim
,
H. Y.
Yu
,
M. F.
Li
,
C.
Ren
,
W. P.
Loh
,
C. Y.
Zhu
,
A.
Chin
,
A. D.
Trigg
,
Y. C.
Yeo
,
S.
Biesemans
,
G. Q.
Lo
, and
D. L.
Kwong
,
IEEE Trans. Electron Devices
54
,
2871
(
2007
).
4.
L.
Pantisano
,
T.
Schram
,
B.
O'Sullivan
,
T.
Conard
,
S.
DeGendt
,
G.
Groesenenken
,
P.
Zimmerman
,
A.
Akheyar
,
M. M.
Heyns
,
S.
Shamuilla
,
V. V.
Afanasev
, and
A.
Stesmans
,
Appl. Phys. Lett.
89
,
113505
(
2006
).
5.
Y.
Yamamoto
,
K.
Kita
,
K.
Kyuno
, and
A.
Toriumi
,
Jpn. J. Appl. Phys., Part 1
46
,
7251
(
2007
).
6.
K.
Iwamoto
,
Y.
Kamimuta
,
A.
Ogawa
,
Y.
Watanabe
,
S.
Migata
,
T.
Nabatame
, and
A.
Toriumi
,
Appl. Phys. Lett.
92
,
132907
(
2008
).
7.
K.
Shiraishi
,
K.
Yamada
,
K.
Torii
,
Y.
Akasaka
,
K.
Nakajima
,
M.
Konno
,
T.
Chikyow
,
H.
Kitajima
,
T.
Arikado
, and
Y.
Nara
,
Thin Solid Films
508
,
305
(
2006
).
8.
S.
Guha
,
V. K.
Paruchuri
,
M.
Copel
,
V.
Narayanan
,
Y. Y.
Wang
,
P. E.
Batson
,
N. A.
Bojarczuk
,
B.
Linder
, and
B.
Doris
,
Appl. Phys. Lett.
90
,
092902
(
2007
).
9.
P. D.
Kirsch
,
P.
Sivasubramani
,
J.
Huang
,
C. D.
Young
,
M. A.
Quevedo-Lopez
,
H. C.
Wen
,
H.
Alshareef
,
K.
Choi
,
C. S.
Park
,
B. H.
Lee
, and
H. H.
Tseng
,
Appl. Phys. Lett.
92
,
092901
(
2008
).
10.
H.
Jagannathan
,
V.
Narayanan
, and
S.
Brown
,
ECS
16
,
19
(
2008
).
11.
K.
Kita
and
A.
Toriumi
,
Appl. Phys. Lett.
94
,
132902
(
2009
).
12.
L. Q.
Zhu
,
K.
Kita
,
T.
Nishimura
,
K.
Nagashio
,
S. K.
Wang
, and
A.
Toriumi
,
Appl. Phys. Express
3
,
061501
(
2010
).
13.
L. Q.
Zhu
,
K.
Kita
,
T.
Nishimura
,
K.
Nagashio
,
S. K.
Wang
, and
A.
Toriumi
,
Jpn. J. Appl. Phys., Part 1
50
,
031502
(
2011
).
14.
T.
Watanabe
,
R.
Kuriyama
,
M.
Hashiguchi
,
R.
Takahashi
,
K.
Shimura
,
A.
Ogura
, and
S.
Satoh
,
ECS Trans.
64
,
3
(
2014
).
15.
K.
Shimura
,
R.
Kunugi
,
A.
Ogura
,
S.
Satoh
,
J.
Fei
,
K.
Kita
, and
T.
Watanabe
,
Jpn. J. Appl. Phys., Part 1
55
,
04EB03
(
2016
).
16.
S.
Taniwaki
,
K.
Imanishi
,
M.
Umano
,
H.
Yoshida
,
K.
Arafune
,
A.
Ogura
,
S.
Satoh
, and
Y.
Hotta
,
J. Appl. Phys.
121
,
225302
(
2017
).
17.
S.
Hibino
,
T.
Nishimura
,
K.
Nagashio
,
K.
Kita
, and
A.
Toriumi
,
Jpn. J. Appl. Phys., Part 1
51
,
081303
(
2012
).
18.

Note: we use the term “superstructure” here rather than “superlattice,” because our high-k layers are amorphous.

19.
S.
Taniwaki
,
H.
Yoshida
,
K.
Arafune
,
A.
Ogura
,
S.
Satoh
, and
Y.
Hotta
,
J. Vac. Sci. Technol. A
34
,
061506
(
2016
).
20.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
Hoboken, NJ, USA
,
2007
).
21.

Note: in the C-V curves, the n-TCSm samples show large VFB shifts towards a negative voltage when compared with the corresponding shift towards a positive voltage shown by the p-TCSm samples. These negative VFB shifts are very high, despite the fact that the only difference between the p-TCS and n-TCS structures is that the Al2O3 and Y2O3 layers in one TCS unit are transposed. In addition, because the SiO2/Al2O3/SiO2/Si and SiO2/Y2O3/SiO2/Si samples show no large-scale shifts, the high-k/SiO2 and SiO2/high-k interfaces in the n-TCSm samples have no relationship with these negative VFB shifts. It is therefore considered that the interfaces that were deposited with the two different sequences of Al2O3/Y2O3 and Y2O3/Al2O3 exhibit different characteristics and that any other mechanism exists to induce the large built-in potential at the Al2O3/Y2O3 interface. Further investigation of this phenomenon will be required.

22.
Y.
Sakai
,
I.
Kawayama
,
H.
Nakanishi
, and
M.
Tonouchi
,
APL Photonics
2
,
041304
(
2017
).
23.
T.
Mochizuki
,
A.
Ito
,
J.
Mitchell
,
H.
Nakanishi
,
K.
Tanahashi
,
I.
Kawayama
,
M.
Tonouchi
,
K.
Shirasawa
, and
H.
Takato
,
Appl. Phys. Lett.
110
,
163502
(
2017
).
24.
C.
Battaglia
,
S. M.
De Nicolás
,
S.
De Wolf
,
X.
Yin
,
M.
Zheng
,
C.
Ballif
, and
A.
Javey
,
Appl. Phys. Lett.
104
,
113902
(
2014
).
25.
S. W.
Glunz
,
D.
Biro
,
S.
Rein
, and
W.
Warta
,
J. Appl. Phys.
86
,
683
(
1999
).
26.
B.
Hoex
,
S. B. S.
Heil
,
E.
Langereis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
89
,
042112
(
2006
).
27.
B.
Hoex
,
J.
Schmidt
,
R.
Bock
,
P. P.
Altermatt
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
91
,
112107
(
2007
).
28.
J.
Benick
,
B.
Hoex
,
M. C. M.
van de Sanden
,
W. M. M.
Kessels
,
O.
Schultz
, and
S. W.
Glunz
,
Appl. Phys. Lett.
92
,
253504
(
2008
).
29.
B.
Hoex
,
J. J. H.
Gielis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
,
113703
(
2008
).
30.
S. W.
Glunz
,
Sol. Energy Mater. Sol. Cells
90
,
3276
(
2006
).
31.
J. H.
Petermann
,
D.
Zielke
,
J.
Schmidt
,
F.
Haase
,
E. G.
Rojas
, and
R.
Brendel
,
Prog. Photovolt.
20
,
1
(
2012
).
32.
S.
Miyajima
,
J.
Irikawa
,
A.
Yamada
, and
M.
Konagai
,
Appl. Phys. Express
3
,
012301
(
2010
).
33.
R.
Kunugi
,
N.
Nakagawa
, and
T.
Watanabe
,
Appl. Phys. Express
10
,
031501
(
2017
).
34.
S.
Zheng
,
W.
Yang
,
Q.-Q.
Sun
,
L.
Chen
,
P.
Zhou
,
P.-F.
Wang
,
D. W.
Zhang
, and
F.
Xiao
,
Appl. Phys. Lett.
103
,
261602
(
2013
).
35.
C. N.
Berglund
,
IEEE Trans. Electron. Devices
ED-13
,
701
(
1966
).
36.
M.
Kuhn
,
Solid-State Electron.
13
,
873
(
1970
).

Supplementary Material

You do not currently have access to this content.