Surface tension is an essential thermophysical property of liquids, and the oscillating droplet method is particularly effective for investigations involving reactive molten alloys. The Rayleigh equation is commonly used to evaluate surface tension from measurements of the damping frequency response of an oscillating droplet with small deformation, but non-linear effects are expected to arise for larger deformation. This work describes an improved method for interpreting frequency analysis and validates previous numerical simulation and theoretical analyses which predict a decrease in observed frequency at moderate deformation amplitude. Experimental results from microgravity tests are used to determine a correction of the Rayleigh equation to eliminate the influence of finite deformation.

1.
A.
Bratz
and
I.
Egry
,
J. Fluid Mech.
298
,
341
(
1995
).
2.
I.
Egry
,
G.
Lohöfer
, and
G.
Jacobs
,
Phys. Rev. Lett.
75
,
4043
(
1995
).
3.
T.
Ishikawa
,
P.-F.
Paradis
, and
S.
Yoda
,
Appl. Phys. Lett.
85
,
5866
(
2004
).
4.
H. P.
Wang
,
C. D.
Cao
, and
B.
Wei
,
Appl. Phys. Lett.
84
,
4062
(
2004
).
5.
S.
Mukherjeea
,
W. L.
Johnson
, and
W. K.
Rhim
,
Appl. Phys. Lett.
86
,
014104
(
2005
).
6.
P.
Heintzmann
,
F.
Yang
,
S.
Schneider
,
G.
Lohöfer
, and
A.
Meyer
,
Appl. Phys. Lett.
108
,
241908
(
2016
).
7.
G.
Lohöfer
and
J.
Piller
, AIAA Paper No. 2002-0764,
2002
.
8.
D. L.
Cummings
and
D. A.
Blackburn
,
J. Fluid Mech.
224
,
395
(
1991
).
9.
I.
Egry
,
H.
Giffard
, and
S.
Schneider
,
Meas. Sci. Technol.
16
,
426
(
2005
).
10.
L.
Rayleigh
,
Proc. R. Soc. London
29
,
71
(
1879
).
11.
E.
Trinh
and
T. G.
Wang
,
J. Fluid Mech.
122
,
315
(
1982
).
12.
E.
Becker
,
W. J.
Hiller
, and
T. A.
Kowalewski
,
J. Fluid Mech.
231
,
189
(
1991
).
13.
J. A.
Tsamopoulos
and
R. A.
Brown
,
J. Fluid Mech.
127
,
519
(
1983
).
14.
H.
Azuma
and
S.
Yoshihara
,
J. Fluid Mech.
393
,
309
(
1999
).
15.
O. A.
Basaran
,
J. Fluid Mech.
241
,
169
(
1992
).
17.
L.
Feng
and
W.-Y.
Shi
,
Int. J. Heat Mass Transfer
122
,
69
(
2018
).
18.
R. K.
Wunderlich
,
H.-J.
Fecht
, and
G.
Lohöfer
,
Metall. Mater. Trans. B
48
,
237
(
2017
).
19.
T.
Iida
and
R. I. L.
Guthrie
,
The Thermophysical Properties of Metallic Liquids
(
Clarendon
,
Oxford
,
2015
), p.
171
.
20.
S.
Amore
,
F.
Valenza
,
D.
Giuranno
,
R.
Novakovic
,
G. D.
Fontana
,
L.
Battezzati
, and
E.
Ricci
,
J. Mater. Sci.
51
,
1680
(
2016
).
You do not currently have access to this content.