In the quantum anomalous Hall effect, the edge states of a ferromagnetically doped topological insulator exhibit quantized Hall resistance and dissipationless transport at zero magnetic field. Up to now, however, the resistance was experimentally assessed using standard transport measurement techniques which are difficult to trace to the von-Klitzing constant RK with high precision. Here, we present a metrologically comprehensive measurement, including a full uncertainty budget, of the resistance quantization of V-doped (Bi,Sb)2Te3 devices without the external magnetic field. For the deviation of the quantized anomalous Hall resistance from RK, we determined a value of 0.17 ± 0.25 ppm, the smallest and most precise value reported to date. This is a step towards realization of a practical zero-field quantum resistance standard which in combination with the Josephson effect could provide the universal quantum units standard in the future.

1.
B. D.
Josephson
, “
Possible new effects in superconductive tunnelling
,”
Phys. Lett.
1
,
251
(
1962
).
2.
S.
Shapiro
, “
Josephson currents in superconducting tunneling: The effect of microwaves and other observations
,”
Phys. Rev. Lett.
11
,
80
(
1963
).
3.
K.
von Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
(
1980
).
4.
F.
Delahaye
and
B.
Jeckelmann
, “
Revised technical guidelines for reliable dc measurements of the quantized Hall resistance
,”
Metrologia
40
,
217
(
2003
).
5.
I. M.
Mills
,
P. J.
Mohr
,
T. J.
Quinn
,
B. N.
Taylor
, and
E. R.
Williams
, “
Redefinition of the kilogram, ampere, kelvin and mole: A proposed approach to implementing CIPM recommendation 1 (CI-2005)
,”
Metrologia
43
,
227
(
2006
).
6.
BIPM information, see www.bipm.org/en/measurement-units/rev-si/ for “on the future revision of the SI.”
7.
B. P.
Kibble
, “
A measurement of the gyromagnetic ratio of the proton by the strong field method
,” in
Atomic Masses and Fundamental Constants 5,
edited by
J. H.
Sanders
and
A. H.
Wapstra
(
Springer
,
1976
), pp.
545
551
.
8.
M.
Stock
, “
Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram
,”
Metrologia
50
,
R1
(
2013
).
9.
The Consultative Committee for Thermometry, see www.bipm.org/cc/CCT/Allowed/Summary_reports/RECOMMENDATION_web_version.pdf (
2014
) for recommendation T 1 (2014) on a new definition of the kelvin.
10.
J.
Qu
,
S. P.
Benz
,
K.
Coakley
,
H.
Rogalla
,
W. L.
Tew
,
R.
White
,
K.
Zhou
, and
Z.
Zhou
, “
An improved electronic determination of the Boltzmann constant by Johnson noise thermometry
,”
Metrologia
54
,
549
(
2017
).
11.
J. C.
Maxwell
,
British Association Report, XL
(1870), reproduced in:
The Scientific Papers of James Clerk Maxwell, Volume 2
(
Cambridge, University Press
,
1890
), p.
225
.
12.
M.
Planck
,
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin
(
Deutsche Akademie der Wissenschaften zu Berlin
,
Berlin
1899
), p.
479
.
13.
C.-Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.-L.
Wang
 et al., “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
(
2013
).
14.
J. G.
Checkelsky
,
R.
Yoshimi
,
A.
Tsukazaki
,
K. S.
Takahashi
,
Y.
Kozuka
,
J.
Falson
,
M.
Kawasaki
, and
Y.
Tokura
, “
Trajectory of anomalous Hall effect toward the quantized state in a ferromagnetic topological insulator
,”
Nat. Phys.
10
,
731
(
2014
).
15.
A. J.
Bestwick
,
E. J.
Fox
,
X.
Kou
,
L.
Pan
,
K. L.
Wang
, and
D.
Goldhaber-Gordon
, “
Precise quantization of the anomalous Hall effect near zero magnetic field
,”
Phys. Rev. Lett.
114
,
187201
(
2015
).
16.
S.
Grauer
,
S.
Schreyeck
,
M.
Winnerlein
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state
,”
Phys. Rev. B
92
,
201304
(
2015
).
17.
C.-Z.
Chang
,
W.
Zhao
,
D. Y.
Kim
,
H.
Zhang
,
B. A.
Assaf
,
D.
Heiman
,
S.-C.
Zhang
,
C.
Liu
,
M. H. W.
Chan
, and
J. S.
Moodera
, “
High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
,”
Nat. Mater.
14
,
473
(
2015
).
18.
During writing of this manuscript, we became aware of a paper which presents similar results on Cr-doped (Bi,Sb)2Te3 samples:
E. J.
Fox
,
I. T.
Rosen
,
Y.
Yang
,
G. R.
Jones
,
R. E.
Elmquist
,
X.
Kou
,
L.
Pan
,
K. L.
Wang
, and
D.
Goldhaber-Gordon
, “
Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect
,” preprint arXiv:1710.01850 (
2017
).
19.
M.
Winnerlein
,
S.
Schreyeck
,
S.
Grauer
,
S.
Rosenberger
,
K. M.
Fijalkowski
,
C.
Gould
,
K.
Brunner
, and
L. W.
Molenkamp
, “
Epitaxy and structural properties of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect
,”
Phys. Rev. Mater.
1
,
011201(R)
(
2017
).
20.
F. J.
Ahlers
,
M.
Götz
, and
K.
Pierz
, “
Direct comparison of fractional and integer quantized Hall resistance
,”
Metrologia
54
,
516
(
2017
).
21.
D.
Drung
,
M.
Götz
,
E.
Pesel
,
J.-H.
Storm
,
C.
Aßmann
,
M.
Peters
, and
Th.
Schurig
, “
Improving the stability of cryogenic current comparator setups
,”
Supercond. Sci. Technol.
22
,
114004
(
2009
).
22.
D.
Drung
and
J.-H.
Storm
, “
Ultralow-noise chopper amplifier with low input charge injection
,”
IEEE Trans. Instrum. Meas.
60
,
2347
(
2011
).
23.
D.
Drung
,
M.
Götz
,
E.
Pesel
, and
H.
Scherer
, “
Improving the traceable measurement and generation of small direct currents
,”
IEEE Trans. Instrum. Meas.
64
,
3021
(
2015
).
24.
W.
van der Wel
,
C. J. P. M.
Harmans
, and
J. E.
Mooij
, “
A geometric explanation of the temperature dependence of the quantised Hall resistance
,”
J. Phys. C: Solid State Phys.
21
,
L171
L175
(
1988
).
25.
See supplementary figure 3 in
R.
Ribeiro-Palau
,
F.
Lafont
,
J.
Brun-Picard
,
D.
Kazazis
,
A.
Michon
,
F.
Cheynis
,
O.
Couturaud
,
C.
Consejo
,
B.
Jouault
,
W.
Poirier
 et al., “
Quantum Hall resistance standard in graphene devices under relaxed experimental conditions
,”
Nat. Nanotechnol.
10
,
965
(
2015
).

Supplementary Material

You do not currently have access to this content.