SnTe is deemed as a natural candidate to replace the state-of-the-art thermoelectric material PbTe, due to its low-cost, low-toxicity, and mechanical stability. Nevertheless, both the peak and average figure of merits of SnTe currently are way too inferior as compared to PbTe. In this work, we report that a peak figure of merit as high as ∼1.3 can be achieved at 873 K in p-type SnTe when it is simultaneously doped with Indium and alloyed with AgSbTe2. Moreover, the average figure of merit can be lifted astonishingly from 0.244 up to 0.84, by a factor of 344%, which is the record high value ever reported. The enhanced thermoelectric performance comes from a synergetic improvement of the power factor and reduction of lattice thermal conductivity. The former can be ascribed to the introduction of resonant states by Indium and probable regulation of the valence band structure by AgSbTe2 alloying, while the latter is believed to originate from the vast substitutional point defects at the Sn site by Ag and Sb substitution.

1.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C. I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
489
(
7416
),
414
(
2012
).
2.
K.
Biswas
,
J.
He
,
Q.
Zhang
,
G.
Wang
,
C.
Uher
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nat. Chem.
3
(
2
),
160
(
2011
).
3.
D.
Wu
,
L. D.
Zhao
,
X.
Tong
,
W.
Li
,
L.
Wu
,
Q.
Tan
,
Y. L.
Pei
,
L.
Huang
,
J. F.
Li
, and
Y. M.
Zhu
,
Energy Environ. Sci.
8
(
7
),
2056
(
2015
).
4.
H. J.
Wu
,
L. D.
Zhao
,
F. S.
Zheng
,
D.
Wu
,
Y. L.
Pei
,
X.
Tong
,
M. G.
Kanatzidis
, and
J. Q.
He
,
Nat. Commun.
5
,
4515
(
2014
).
5.
F.
Herman
,
R. L.
Kortum
, and
I. B.
Ortenburger
,
Le J. Phys. Colloq.
29
(
C4
),
C4-62
(
1968
).
6.
A.
Veis
and
Y.
Ukhanov
,
Sov. Phys. Semicond.
10
(
7
),
780
(
1976
).
7.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
(
5888
),
554
(
2008
).
8.
Q.
Zhang
,
B.
Liao
,
Y.
Lan
,
K.
Lukas
,
W.
Liu
,
K.
Esfarjani
,
C.
Opeil
,
D.
Broido
,
G.
Chen
, and
Z.
Ren
,
Proc. Natl. Acad. Sci. U.S.A.
110
(
33
),
13261
(
2013
).
9.
M.
Zhou
,
Z. M.
Gibbs
,
H.
Wang
,
Y. M.
Han
,
L. F.
Li
, and
G. J.
Snyder
,
Appl. Phys. Lett.
109
(
4
),
042102
(
2016
).
10.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Science
320
(
5876
),
634
(
2008
).
11.
B. C.
Sales
,
D.
Mandrus
, and
R. K.
Williams
,
Science
272
(
5266
),
1325
(
1996
).
12.
L. D.
Zhao
,
S. H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
(
7496
),
373
(
2014
).
13.
H.
Liu
,
X.
Shi
,
F.
Xu
,
L.
Zhang
,
W.
Zhang
,
L.
Chen
,
Q.
Li
,
C.
Uher
,
T.
Day
, and
G. J.
Snyder
,
Nat. Mater.
11
(
5
),
422
(
2012
).
14.
T. J.
Zhu
,
S. N.
Zhang
,
S. H.
Yang
, and
X. B.
Zhao
,
Phys. Status Solidi RRL
4
(
11
),
317
(
2010
).
15.
S. I.
Kim
,
K. H.
Lee
,
H. A.
Mun
,
H. S.
Kim
,
S. W.
Hwang
,
J. W.
Roh
,
D. J.
Yang
,
W. H.
Shin
,
X. S.
Li
,
Y. H.
Lee
,
G. J.
Snyder
, and
S. W.
Kim
,
Science
348
(
6230
),
109
(
2015
).
16.
Y. Z.
Pei
and
D. T.
Morelli
,
Appl. Phys. Lett.
94
(
12
),
122112
(
2009
).
17.
B.
Yu
,
M.
Zebarjadi
,
H.
Wang
,
K.
Lukas
,
H.
Wang
,
D.
Wang
,
C.
Opeil
,
M.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
12
(
4
),
2077
(
2012
).
18.
H.
Wang
,
A. D.
LaLonde
,
Y. Z.
Pei
, and
G. J.
Snyder
,
Adv. Funct. Mater.
23
(
12
),
1586
(
2013
).
19.
D.
Wu
,
L. J.
Wu
,
D. S.
He
,
L. D.
Zhao
,
W.
Li
,
M. H.
Wu
,
M.
Jin
,
J. T.
Xu
,
J.
Jiang
,
L.
Huang
,
Y. M.
Zhu
,
M. G.
Kanatzidis
, and
J. Q.
He
,
Nano Energy
35
,
321
(
2017
).
20.
L. J.
Zhang
,
J. L.
Wang
,
Z. X.
Cheng
,
Q.
Sun
,
Z.
Li
, and
S. X.
Dou
,
J. Mater. Chem. A
4
(
20
),
7936
(
2016
).
21.
A.
Banik
,
U. S.
Shenoy
,
S.
Anand
,
U. V.
Waghmare
, and
K.
Biswas
,
Chem. Mater.
27
(
2
),
581
(
2015
).
22.
A.
Banik
and
K.
Biswas
,
J. Mater. Chem. A
2
(
25
),
9620
(
2014
).
23.
G. J.
Tan
,
L. D.
Zhao
,
F. Y.
Shi
,
J.
Doak
,
S. H.
Lo
,
H.
Sun
,
C.
Wolverton
,
V. P.
Dravid
,
C.
Uher
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
136
(
19
),
7006
(
2014
).
24.
G. J.
Tan
,
F.
Shi
,
S.
Hao
,
H.
Chi
,
T. P.
Bailey
,
L. D.
Zhao
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
137
(
35
),
11507
(
2015
).
25.
G. J.
Tan
,
F. Y.
Shi
,
J.
Doak
,
H.
Sun
,
L. D.
Zhao
,
P.
Wang
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
8
(
1
),
267
(
2015
).
26.
W.
Li
,
L. L.
Zheng
,
B.
Ge
,
S. Q.
Lin
,
X. Y.
Zhang
,
Z. W.
Chen
,
Y. J.
Chang
, and
Y. Z.
Pei
,
Adv. Mater.
29
(
17
),
1605887
(
2017
).
27.
Y.
Chen
,
M. D.
Nielsen
,
Y. B.
Gao
,
T. J.
Zhu
,
X. B.
Zhao
, and
J. P.
Heremans
,
Adv. Energy Mater.
2
(
1
),
58
(
2012
).
28.
M.
Zhou
,
Z. M.
Gibbs
,
H.
Wang
,
Y.
Han
,
C.
Xin
,
L.
Li
, and
G. J.
Snyder
,
Phys. Chem. Chem. Phys.
16
(
38
),
20741
(
2014
).

Supplementary Material

You do not currently have access to this content.