We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

1.
T.
Schneider
,
J.
Kreutz
, and
D. T.
Chiu
,
Anal. Chem.
85
,
3476
(
2013
).
2.
I. S.
Casadevall
and
A.
DeMello
,
Chem. Commun.
47
,
1936
(
2011
).
3.
J. F.
Edd
,
D.
Di Carlo
,
K. J.
Humphry
,
S.
Köster
,
D.
Irimia
,
D. A.
Weitz
, and
M.
Toner
,
Lab Chip
8
,
1262
(
2008
).
4.
A. M.
Klein
,
L.
Mazutis
,
I.
Akartuna
,
N.
Tallapragada
,
A.
Veres
,
V.
Li
,
L.
Peshkin
,
D. A.
Weitz
, and
M. W.
Kirschner
,
Cell
161
,
1187
(
2015
).
5.
N. R.
Beer
,
E. K.
Wheeler
,
L.
Lee-Houghton
,
N.
Watkins
,
S.
Nasarabadi
,
N.
Hebert
,
P.
Leung
,
D. W.
Arnold
,
C. G.
Bailey
, and
B. W.
Colston
,
Anal. Chem.
80
,
1854
(
2008
).
6.
D.
Pekin
,
Y.
Skhiri
,
J.-C.
Baret
,
D.
Le Corre
,
L.
Mazutis
,
C. B.
Salem
,
F.
Millot
,
A.
El Harrak
,
J. B.
Hutchison
,
J. W.
Larson
,
D. R.
Link
,
P.
Laurent-Puig
,
A. D.
Griffiths
, and
V.
Taly
,
Lab Chip
11
,
2156
(
2011
).
7.
J. J.
Agresti
,
E.
Antipov
,
A. R.
Abate
,
K.
Ahn
,
A. C.
Rowat
,
J.-C.
Baret
,
M.
Marquez
,
A. M.
Klibanov
,
A. D.
Griffiths
, and
D. A.
Weitz
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
4004
(
2010
).
8.
S. L.
Sjostrom
,
Y.
Bai
,
M.
Huang
,
Z.
Liu
,
J.
Nielsen
,
H. N.
Joensson
, and
H. A.
Svahn
,
Lab Chip
14
,
806
(
2014
).
9.
M.
Tenje
,
A.
Fornell
,
M.
Ohlin
, and
J.
Nilsson
,
Anal. Chem.
(to be published).
10.
J. C.
Baret
,
O. J.
Miller
,
V.
Taly
,
M.
Ryckelynck
,
A.
El-Harrak
,
L.
Frenz
,
C.
Rick
,
M. L.
Samuels
,
J. B.
Hutchison
,
J. J.
Agresti
,
D. R.
Link
,
D. A.
Weitz
, and
A. D.
Griffiths
,
Lab Chip
9
,
1850
(
2009
).
11.
T.
Franke
,
A. R.
Abate
,
D.
Weitz
, and
A.
Wixforth
,
Lab Chip
9
,
2625
(
2009
).
12.
A.
Huebner
,
D.
Bratton
,
G.
Whyte
,
M.
Yang
,
A. J.
DeMello
,
C.
Abell
, and
F.
Hollfelder
,
Lab Chip
9
,
692
(
2009
).
13.
J. H.
Jung
,
G.
Destgeer
,
J.
Park
,
H.
Ahmed
,
K.
Park
, and
H. J.
Sung
,
Anal. Chem.
89
,
2211
(
2017
).
14.
A.
Fornell
,
J.
Nilsson
,
L.
Jonsson
,
P. K. P.
Rajeswari
,
H. N.
Joensson
, and
M.
Tenje
,
Anal. Chem.
87
,
10521
(
2015
).
15.
A.
Fornell
,
M.
Ohlin
,
F.
Garofalo
,
J.
Nilsson
, and
M.
Tenje
,
Biomicrofluidics
11
,
31101
(
2017
).
16.
S.
Han
,
H. S.
Kim
, and
A.
Han
,
Biosens. Bioelectron.
97
,
41
(
2017
).
17.
E.
Brouzes
,
M.
Medkova
,
N.
Savenelli
,
D.
Marran
,
M.
Twardowski
,
J. B.
Hutchison
,
J. M.
Rothberg
,
D. R.
Link
,
N.
Perrimon
, and
M. L.
Samuels
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
14195
(
2009
).
18.
R.
Gao
,
Z.
Cheng
,
A.
deMello
, and
J.
Choo
,
Lab Chip
16
,
1022
(
2016
).
19.
G. K.
Kurup
and
A. S.
Basu
,
Biomicrofluidics
6
,
22008
(
2012
).
20.
M.
Hein
,
M.
Moskopp
, and
R.
Seemann
,
Lab Chip
15
,
2879
(
2015
).
21.
F.
Petersson
,
A.
Nilsson
,
C.
Holm
,
H.
Jonsson
, and
T.
Laurell
,
Lab Chip
5
,
20
(
2005
).
22.
J.
Shi
,
H.
Huang
,
Z.
Stratton
,
Y.
Huang
, and
T. J.
Huang
,
Lab Chip
9
,
3354
(
2009
).
23.
P.
Augustsson
,
C.
Magnusson
,
M.
Nordin
,
H.
Lilja
, and
T.
Laurell
,
Anal. Chem.
84
,
7954
(
2012
).
24.
I.
Leibacher
,
P.
Reichert
, and
J.
Dual
,
Lab Chip
15
,
2896
(
2015
).
25.
P. R.
Rogers
,
J. R.
Friend
, and
L. Y.
Yeo
,
Lab Chip
10
,
2979
(
2010
).
27.
C.
Grenvall
,
P.
Augustsson
,
J. R.
Folkenberg
, and
T.
Laurell
,
Anal. Chem.
81
,
6195
(
2009
).
28.
S. V. V. N.
Kothapalli
,
M.
Wiklund
,
B.
Janerot-Sjoberg
,
G.
Paradossi
, and
D.
Grishenkov
,
Ultrasonics
70
,
275
(
2016
).
29.
K. W.
Cushing
,
M. E.
Piyasena
,
N. J.
Carroll
,
G. C.
Maestas
,
B. A.
López
,
B. S.
Edwards
,
S. W.
Graves
, and
G. P.
López
,
Anal. Chem.
85
,
2208
(
2013
).
30.
K.
Cushing
,
E.
Undvall
,
Y.
Ceder
,
H.
Lilja
, and
T.
Laurell
,
Anal. Chim. Acta
1000
,
256
(
2018
).
31.
Y. H.
Choi
,
K. H.
Chung
,
H. B.
Hong
, and
W. S.
Lee
,
Int. J. Polym. Mater. Polym. Biomater.
66
,
1
(
2017
).
32.
O.
Carrier
,
F. G.
Ergin
,
H.-Z.
Li
,
B. B.
Watz
, and
D.
Funfschilling
,
J. Micromech. Microeng.
25
,
84014
(
2015
).
33.
H.
Kinoshita
,
S.
Kaneda
,
T.
Fujii
, and
M.
Oshima
,
Lab Chip
7
,
338
(
2007
).
34.
M.
Ohlin
,
A.
Fornell
,
H.
Bruus
, and
M.
Tenje
,
J. Micromech. Microeng.
27
,
84002
(
2017
).

Supplementary Material

You do not currently have access to this content.