Heavy n-type doping in polycrystalline Ge (poly-Ge) is still under development owing to the low solid solubility and the low activation ratio of group-V dopants in Ge. To solve this problem, we have investigated ultra-short (55 ns) laser pulse annealing in flowing water for Sb-doped amorphous Ge1−xSnx layers (x ≈ 0.02) on SiO2. It is found that fully melting a Ge1−xSnx layer down to the Ge1−xSnx/SiO2 interface leads to a large grained (∼0.8 μmϕ) growth, resulting in not only a high electrical activation ratio (∼60%) of Sb atoms in the polycrystals but also a high electron density around 1020 cm−3. As a result, the electron mobility in the Ge-rich poly-Ge1−xSnx layers exceeds that in single-crystalline Si even in the region of a high electron density around 1020 cm−3. The low thermal budget process opens up the possibility for developing Ge1−xSnx based devices fabricated on 3D integrated circuits as well as flexible substrates.

1.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
), p.
29
.
2.
K.
Toko
,
I.
Nakao
,
T.
Sadoh
,
T.
Noguchi
, and
M.
Miyao
,
Solid-State Electron.
53
,
1159
(
2009
).
3.
T.
Sadoh
,
H.
Kamizuru
,
A.
Kenjo
, and
M.
Miyao
,
Jpn. J. Appl. Phys., Part 1
46
,
1250
(
2007
).
4.
Y.
Kamata
,
Y.
Kamimuta
,
K.
Ikeda
,
K.
Furuse
,
M.
Ono
,
M.
Oda
,
Y.
Moriyama
,
K.
Usuda
,
M.
Koike
,
T.
Irisawa
,
E.
Kurosawa
, and
T.
Tezuka
, in
2013 Symposium on VLSI Technology Digest of Technical Papers
(
2013
), p.
T94
.
5.
C.-H.
Shen
,
J.-M.
Shieh
,
W.-H.
Huang
,
T.-T.
Wu
,
C.-F.
Chen
,
M.-H.
Kao
,
C.-C.
Yang
,
C.-D.
Lin
,
H.-H.
Wang
,
T.-Y.
Hsieh
,
B.-Y.
Chen
,
G.-W.
Huang
,
M.-F.
Chang
, and
F.-L.
Yang
, in
2014 International Electron Devices Meeting Technical Digest
(
2014
), p.
67
.
6.
W.-H.
Huang
,
J.-M.
Shieh
,
C.-H.
Shen
,
T.-E.
Huang
,
H.-H.
Wang
,
C.-C.
Yang
,
T.-Y.
Hsieh
,
J.-L.
Hsieh
, and
W.-K.
Yeh
,
Appl. Phys. Lett.
108
,
243502
(
2016
).
7.
Y.
Kamata
,
M.
Koike
,
Y.
Kamimuta
,
E.
Kurosawa
, and
T.
Tezuka
, in
International Semiconductor Device Research Symposium 2013
(
2013
), p. WP3_04.
8.
K.
Usuda
,
Y.
Kamata
,
Y.
Kamimuta
,
T.
Mori
,
M.
Koike
, and
T.
Tezuka
,
Appl. Phys. Express
7
,
056501
(
2014
).
9.
Y.
Kamata
,
M.
Koike
,
E.
Kurosawa
,
M.
Kurosawa
,
H.
Ota
,
O.
Nakatsuka
,
S.
Zaima
, and
T.
Tezuka
,
Appl. Phys. Express
7
,
121302
(
2014
).
10.
F. A.
Trumbore
,
Bell Syst. Tech. J.
39
,
205
(
1960
).
11.
M.
Koike
,
Y.
Kamata
,
T.
Ino
,
D.
Hagishima
,
K.
Tatsumura
,
M.
Koyama
, and
A.
Nishiyama
,
J. Appl. Phys.
104
,
023523
(
2008
).
12.
H.-W.
Jung
,
W.-S.
Jung
,
H.-Y.
Yu
, and
J.-H.
Park
,
J. Alloys Compd.
561
,
231
(
2013
).
13.
R.
Matsumura
,
M.
Anisuzzaman
,
H.
Yokoyama
,
T.
Sadoh
, and
M.
Miyao
,
ECS Solid State Lett.
2
,
58
(
2013
).
14.
M.
Koike
,
K.
Usuda
,
T.
Mori
,
T.
Maeda
, and
T.
Tezuka
, in
Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials
(
2015
), p.
1102
.
15.
E.
Machida
,
M.
Horita
,
Y.
Ishikawa
,
Y.
Uraoka
, and
H.
Ikenoue
,
Appl. Phys. Lett.
101
,
252106
(
2012
).
16.
M.
Kurosawa
,
N.
Taoka
,
H.
Ikenoue
,
O.
Nakatsuka
, and
S.
Zaima
,
Appl. Phys. Lett.
104
,
061901
(
2014
).
17.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
21
,
165
(
1993
).
18.
S.
Whelan
,
A.
La Magna
,
V.
Privitera
,
G.
Mannino
,
M.
Italia
,
C.
Bongiorno
,
G.
Fortunato
, and
L.
Mariucci
,
Phys. Rev. B
67
,
075201
(
2003
).
19.
C.
Xu
,
C. L.
Senaratne
,
P.
Sims
,
J.
Kouvetakis
, and
J.
Menendez
,
Appl. Mater. Interfaces
8
,
23810
(
2016
).
20.
M.
Oehme
,
J.
Werner
, and
E.
Kasper
,
J. Cryst. Growth
310
,
4531
(
2008
).
21.
G.
Thareja
,
J.
Liang
,
S.
Chopra
,
B.
Adams
,
N.
Patil
,
S. L.
Cheng
,
A.
Nainani
,
E.
Tasyurek
,
Y.
Kim
,
S.
Moffatt
,
R.
Brennan
,
J.
McVittie
,
T.
Kamins
,
K.
Saraswat
, and
Y.
Nishi
, in
2010 International Electron Devices Meeting Technical Digest
(
2010
), p.
245
.
22.
S. M.
Sze
,
Semiconductor Devices, Physics and Technology
(
Wiley
,
New York
,
1985
), p.
34
.

Supplementary Material

You do not currently have access to this content.