This paper presents topology optimization for thermal cloaks expressed by level-set functions and explored using the covariance matrix adaptation evolution strategy (CMA-ES). Designed optimal configurations provide superior performances in thermal cloaks for the steady-state thermal conduction and succeed in realizing thermal invisibility, despite the structures being simply composed of iron and aluminum and without inhomogeneities caused by employing metamaterials. To design thermal cloaks, a prescribed objective function is used to evaluate the difference between the temperature field controlled by a thermal cloak and when no thermal insulator is present. The CMA-ES involves searches for optimal sets of level-set functions as design variables that minimize a regularized fitness involving a perimeter constraint. Through topology optimization subject to structural symmetries about four axes, we obtain a concept design of a thermal cloak that functions in an isotropic heat flux.

1.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
,
1780
(
2006
).
3.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justine
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
,
977
(
2006
).
4.
Y.
Yang
,
L.
Jing
,
B.
Zheng
,
R.
Hao
,
W.
Yin
,
E.
Li
,
C. M.
Soukoulis
, and
H.
Chen
,
Adv. Mater.
28
,
6866
(
2016
).
5.
M.
Selvanayagam
and
G. V.
Eleftheriades
,
Phys. Rev. X
3
,
041011
(
2013
).
6.
L.
Shen
,
B.
Zheng
,
Z.
Liu
,
Z.
Wang
,
S.
Lin
,
S.
Dehdashti
,
E.
Li
, and
H.
Chen
,
Adv. Opt. Mater.
3
,
1738
(
2015
).
7.
Y.
Lai
,
H.
Chen
,
Z.-Q.
Zhang
, and
C. T.
Chan
,
Phys. Rev. Lett.
102
,
093901
(
2009
).
8.
S. A.
Cummer
and
D.
Schurig
,
New J. Phys.
9
,
45
(
2007
).
9.
H.
Chen
and
C. T.
Chan
,
Appl. Phys. Lett.
91
,
183518
(
2007
).
10.
F.
Yang
,
Z. L.
Mei
,
T. Y.
Jin
, and
T. J.
Cui
,
Phys. Rev. Lett.
109
,
053902
(
2012
).
11.
F.
Yang
,
Z. L.
Mei
,
X. Y.
Yang
,
T. Y.
Jin
, and
T. J.
Cui
,
Adv. Funct. Mater.
23
,
4306
(
2013
).
12.
Y. A.
Urzhumov
and
D. R.
Smith
,
Phys. Rev. Lett.
107
,
074501
(
2011
).
13.
M. P.
Bendsøe
and
N.
Kikuchi
,
Comput. Methods Appl. Mech. Eng.
71
,
197
(
1988
).
14.
J.
Andkjær
,
N. A.
Mortensen
, and
O.
Sigmund
,
Appl. Phys. Lett.
100
,
101106
(
2012
).
15.
G.
Fujii
,
H.
Watanabe
,
T.
Yamada
,
T.
Ueta
, and
M.
Mizuno
,
Appl. Phys. Lett.
102
,
251106
(
2013
).
16.
T.
Yamada
,
H.
Watanabe
,
G.
Fujii
, and
T.
Matsumoto
,
IEEE Trans. Magn.
49
,
2073
(
2013
).
17.
N.
Kishimoto
,
K.
Izui
,
S.
Nishiwaki
, and
T.
Yamada
,
Appl. Phys. Lett.
110
,
201104
(
2017
).
18.
G.
Fujii
,
M.
Takahashi
, and
Y.
Akimoto
,
Comput. Methods Appl. Mech. Eng.
(
2018
), .
19.
G.
Fujii
and
T.
Ueta
,
Phys. Rev. E
94
,
043301
(
2016
).
20.
G.
Fujii
,
Y.
Akimoto
, and
M.
Takahashi
, “
Achieving direct current electric invisibility through a topology optimization based on CMA-ES
,”
J. Appl. Phys.
(submitted).
21.
C. Z.
Fan
,
Y.
Gao
, and
J. P.
Huang
,
Appl. Phys. Lett.
92
,
251907
(
2008
).
22.
T.
Chen
,
C.-N.
Weng
, and
J.-S.
Chen
,
Appl. Phys. Lett.
93
,
114103
(
2008
).
23.
S.
Guenneau
,
C.
Amra
, and
D.
Veynante
,
Opt. Exp.
20
,
8207
(
2012
).
24.
R.
Schittny
,
M.
Kadic
,
S.
Guenneau
, and
M.
Wegener
,
Phys. Rev. Lett.
110
,
195901
(
2013
).
25.
Y.
Ma
,
L.
Lan
,
W.
Jiang
,
F.
Sun
, and
S.
He
,
NPG Asia Mater.
5
,
e73
(
2013
).
26.
E. M.
Dede
,
T.
Nomura
, and
J.
Lee
,
Struct. Multidiscip. Optim.
49
,
59
(
2014
).
27.
T.
Han
,
T.
Yuan
,
B.
Li
, and
C.-W.
Qiu
,
Sci. Rep.
3
,
1593
(
2013
).
28.
T.
Han
,
X.
Bai
,
D.
Gao
,
J. T. L.
Thong
,
B.
Li
, and
C.-W.
Qiu
,
Phys. Rev. Lett.
112
,
054302
(
2014
).
29.
H.
Xu
,
X.
Shi
,
F.
Gao
,
H.
Sun
, and
B.
Zhang
,
Phys. Rev. Lett.
112
,
054301
(
2014
).
30.
N.
Hansen
, preprint arXiv:1604.00772 (
2016
).
31.
D. M.
Nguyen
,
H.
Xu
,
Y.
Zhang
, and
B.
Zhang
,
Appl. Phys. Lett.
107
,
121901
(
2015
).
You do not currently have access to this content.