The present study aims to demonstrate how active hybrid nano-plasmonic modes become excited due to the coupling of localized plasmonic resonance and Fabry-Perot (FP) optical modes. The proposed structure includes an integration of a micro-cavity filled with liquid crystals with high anisotropy and a layer of gold nanoislands (NIs). The optical absorption of NI is controllably discretized to the narrow-width modes, called “hybrid modes (HM),” due to the interplay between FP and plasmonic modes. HM could demonstrate a strongly intensified and diminished absorption, compared to the absorption of the bare gold layer. Based on the active plasmonic experiments, the HM boosted the figure of merit related to activation capability up to 40 times and subsequently experienced impressive spectral shifts, leading to very wavelength-selective changes. The theoretical simulation of the HM is provided to suggest relevant insights into the experimental results.

1.
C.
Hägglund
,
G.
Zeltzer
,
R.
Ruiz
,
A.
Wangperawong
,
K. E.
Roelofs
, and
S. F.
Bent
,
ACS Photonics
3
(
3
),
456
463
(
2016
).
2.
C.
Han
and
W. Y.
Tam
,
Appl. Phys. Lett.
106
(
8
),
081102
(
2015
).
3.
Q.
Li
,
K.
Du
,
K.
Mao
,
X.
Fang
,
D.
Zhao
,
H.
Ye
, and
M.
Qiu
,
Sci. Rep.
6
,
29195
(
2016
).
4.
R. F.
Oulton
,
V. J.
Sorger
,
T.
Zentgraf
,
R.-M.
Ma
,
C.
Gladden
,
L.
Dai
,
G.
Bartal
, and
X.
Zhang
,
Nature
461
(
7264
),
629
(
2009
).
5.
P. K.
Jain
,
K. S.
Lee
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
,
J. Phys. Chem. B
110
(
14
),
7238
7248
(
2006
).
6.
T.
Ding
,
C.
Rüttiger
,
X.
Zheng
,
F.
Benz
,
H.
Ohadi
,
G. A.
Vandenbosch
,
V. V.
Moshchalkov
,
M.
Gallei
, and
J. J.
Baumberg
,
Adv. Opt. Mater.
4
(
6
),
877
882
(
2016
).
7.
T.
Ding
,
D.
Sigle
,
L.
Zhang
,
J.
Mertens
,
B.
de Nijs
, and
J.
Baumberg
,
ACS Nano
9
(
6
),
6110
6118
(
2015
).
8.
T. B.
Hoang
and
M. H.
Mikkelsen
,
Appl. Phys. Lett.
108
(
18
),
183107
(
2016
).
9.
F.
Meriaudeau
,
T. R.
Downey
,
A.
Passian
,
A.
Wig
, and
T. L.
Ferrell
,
Appl. Opt.
37
(
34
),
8030
8037
(
1998
).
10.
A. L.
Baudrion
,
A.
Perron
,
A.
Veltri
,
A.
Bouhelier
,
P. M.
Adam
, and
R.
Bachelot
,
Nano Lett
13
(
1
),
282
286
(
2013
).
11.
P. A.
Ledin
,
M.
Russell
,
J. A.
Geldmeier
,
I. M.
Tkachenko
,
M. A.
Mahmoud
,
V.
Shevchenko
,
M. A.
El-Sayed
, and
V. V.
Tsukruk
,
ACS Appl. Mater. Interfaces
7
(
8
),
4902
4912
(
2015
).
12.
A.
Choudhary
and
G.
Li
,
Opt. Express
22
(
20
),
24348
24357
(
2014
).
13.
P. A.
Kossyrev
,
A.
Yin
,
S. G.
Cloutier
,
D. A.
Cardimona
,
D.
Huang
,
P. M.
Alsing
, and
J. M.
Xu
,
Nano Lett.
5
(
10
),
1978
1981
(
2005
).
14.
Y. J.
Liu
,
Q.
Hao
,
J. S. T.
Smalley
,
J.
Liou
,
I. C.
Khoo
, and
T. J.
Huang
,
Appl. Phys. Lett.
97
(
9
),
091101
(
2010
).
15.
Y. J.
Liu
,
G. Y.
Si
,
E. S.
Leong
,
N.
Xiang
,
A. J.
Danner
, and
J. H.
Teng
,
Adv. Mater.
24
(
23
),
OP131
OP135
(
2012
).
16.
G.
Si
,
E. S.
Leong
,
X.
Jiang
,
J.
Lv
,
J.
Lin
,
H.
Dai
, and
Y. J.
Liu
,
Phys. Chem. Chem. Phys.
17
(
20
),
13223
13227
(
2015
).
17.
J.
Xie
,
X.
Zhang
,
Z.
Peng
,
Z.
Wang
,
T.
Wang
,
S.
Zhu
,
Z.
Wang
,
L.
Zhang
,
J.
Zhang
, and
B.
Yang
,
J. Phys. Chem. C
116
(
4
),
2720
2727
(
2012
).
18.
C.
Sönnichsen
,
T.
Franzl
,
T.
Wilk
,
G.
von Plessen
,
J.
Feldmann
,
O.
Wilson
, and
P.
Mulvaney
,
Phys. Rev. Lett.
88
(
7
),
077402
(
2002
).
19.
D.
Chanda
,
K.
Shigeta
,
T.
Truong
,
E.
Lui
,
A.
Mihi
,
M.
Schulmerich
,
P. V.
Braun
,
R.
Bhargava
, and
J. A.
Rogers
,
Nat. Commun.
2
,
479
(
2011
).
20.
L.
Guo
,
J. A.
Jackman
,
H.-H.
Yang
,
P.
Chen
,
N.-J.
Cho
, and
D.-H.
Kim
,
Nano Today
10
(
2
),
213
239
(
2015
).
21.
X.
Jiang
,
H.
Yuan
,
B.
Zhang
, and
X.
Sun
,
RSC Adv.
6
(
106
),
104112
104116
(
2016
).
22.
X.
Wang
,
R.
Morea
,
J.
Gonzalo
, and
B.
Palpant
,
Nano Lett.
15
(
4
),
2633
2639
(
2015
).
23.
D. J.
Park
,
C.
Zhang
,
J. C.
Ku
,
Y.
Zhou
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Proc. Natl. Acad. Sci.
112
(
4
),
977
981
(
2015
).
24.
B. E.
Saleh
,
M. C.
Teich
, and
B. E.
Saleh
,
Fundamentals of Photonics
(
Wiley
,
New York
,
1991
).
25.
M. A.
Schmidt
,
D. Y.
Lei
,
L.
Wondraczek
,
V.
Nazabal
, and
S. A.
Maier
,
Nat. Commun.
3
,
1108
(
2012
).
26.
J.
Li
,
M.
Jiang
,
C.
Xu
,
Y.
Wang
,
Y.
Lin
,
J.
Lu
, and
Z.
Shi
,
Sci. Rep.
5
,
9263
(
2015
).
27.
G.
Lu
,
B.
Cheng
,
H.
Shen
,
Y.
Zhou
,
Z.
Chen
,
G.
Yang
,
O.
Tillement
,
S.
Roux
, and
P.
Perriat
,
Appl. Phys. Lett.
89
(
22
),
223904
(
2006
).
28.
T.
Abhilash
,
M.
Balasubrahmaniyam
,
A.
Patra
, and
S.
Kasiviswanathan
,
Appl. Phys. Lett.
104
(
24
),
241112
(
2014
).
29.
A.
Jiménez-Solano
,
C.
López-López
,
O.
Sánchez-Sobrado
,
J. M.
Luque
,
M. E.
Calvo
,
C.
Fernández-López
,
A.
Sánchez-Iglesias
,
L. M.
Liz-Marzán
, and
H. N.
Míguez
,
Langmuir
28
(
24
),
9161
9167
(
2012
).
30.
J.
Doak
,
R. K.
Gupta
,
K.
Manivannan
,
K.
Ghosh
, and
P. K.
Kahol
,
Physica E
42
(
5
),
1605
1609
(
2010
).
31.
T.
Karakouz
,
D.
Holder
,
M.
Goomanovsky
,
A.
Vaskevich
, and
I.
Rubinstein
,
Chem. Mater.
21
(
24
),
5875
5885
(
2009
).
32.
H.
Sun
,
M.
Yu
,
G.
Wang
,
X.
Sun
, and
J.
Lian
,
J. Phys. Chem. C
116
(
16
),
9000
9008
(
2012
).
33.
H.
Liu
,
M.
Erouel
,
E.
Gerelli
,
A.
Harouri
,
T.
Benyattou
,
R.
Orobtchouk
,
L.
Milord
,
A.
Belarouci
,
X.
Letartre
, and
C.
Jamois
,
Opt. Express
23
(
24
),
31085
31097
(
2015
).
34.
Y.
Huang
,
T. X.
Wu
, and
S.-T.
Wu
,
J. Appl. Phys.
93
(
5
),
2490
2495
(
2003
).
35.
K.
Chu
,
C.
Chao
,
Y.
Chen
,
Y.
Wu
, and
C.-C.
Chen
,
Appl. Phys. Lett.
89
(
10
),
103107
(
2006
).
36.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
(
7
),
3693
3723
(
2003
).
37.
L. A.
Pettersson
,
L. S.
Roman
, and
O.
Inganäs
,
J. Appl. Phys.
86
(
1
),
487
496
(
1999
).
38.
R.
Ameling
,
L.
Langguth
,
M.
Hentschel
,
M.
Mesch
,
P. V.
Braun
, and
H.
Giessen
,
Appl. Phys. Lett.
97
(
25
),
253116
(
2010
).
39.
A.
Mitra
,
H.
Harutyunyan
,
S.
Palomba
, and
L.
Novotny
,
Opt. Lett.
35
(
7
),
953
955
(
2010
).

Supplementary Material

You do not currently have access to this content.