This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.

1.
G. D.
Larson
,
P. H.
Rogers
, and
W.
Munk
,
J. Acoust. Soc. Am.
103
,
1428
(
1998
).
2.
D.
Guyomar
,
A.
Badel
,
E.
Lefeuvre
, and
C.
Richard
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
52
,
584
(
2005
).
3.
C. L.
Davis
and
G. A.
Lesieutre
,
J. Sound Vib.
232
,
601
(
2000
).
4.
K. A.
Cunefare
,
S. D.
Rosa
,
N.
Sadegh
, and
G.
Larson
,
J. Intell. Mater. Syst. Struct.
11
,
300
(
2000
).
5.
C.
Richard
,
D.
Guyomar
,
D.
Audigier
, and
G.
Ching
,
Proc. SPIE
3672
,
104
111
(
1999
).
6.
W. W.
Clark
,
J. Intell. Mater. Syst. Struct.
11
,
263
(
2000
).
7.
J. L.
Kauffman
and
G. A.
Lesieutre
,
AIAA J.
50
,
1137
(
2012
).
8.
G. D.
Larson
and
K. A.
Cunefare
,
J. Vib. Acoust.
126
,
278
(
2004
).
9.
C.
Richard
,
D.
Guyomar
,
D.
Audigier
, and
H.
Bassaler
,
Proc. SPIE
3989
,
288
299
(
2000
).
10.
E.
Lefeuvre
,
A.
Badel
,
L.
Petit
,
C.
Richard
, and
D.
Guyomar
,
J. Intell. Mater. Syst. Struct.
17
,
653
(
2006
).
11.
K. A.
Cunefare
,
J. Intell. Mater. Syst. Struct.
13
,
97
(
2002
).
12.
M. H.
Holdhusen
and
K. A.
Cunefare
,
J. Vib. Acoust.
129
,
577
(
2007
).
13.
G. K.
Lopp
and
J. L.
Kauffman
,
J. Vib. Acoust.
138
,
011002
(
2015
).
14.
15.
N. M.
Auciello
and
A.
Ercolano
,
Int. J. Solids Struct.
41
,
4861
(
2004
).
16.
P.
Qiao
and
F.
Chen
,
J. Sound Vib.
331
,
1143
(
2012
).
17.
J. L.
Kauffman
and
G. A.
Lesieutre
,
J. Intell. Mater. Syst. Struct.
20
,
495
(
2009
).
18.
A.
Erturk
,
Comput. Struct.
106–107
,
214
(
2012
).
19.
A.
Badel
,
G.
Sebald
,
D.
Guyomar
,
M.
Lallart
,
E.
Lefeuvre
,
C.
Richard
, and
J.
Qiu
,
J. Acoust. Soc. Am.
119
,
2815
(
2006
).
20.
M.
Lallart
and
D.
Guyomar
,
Appl. Phys. Lett.
97
,
014104
(
2010
).
21.
N. W.
Hagood
and
A.
von Flotow
,
J. Sound Vib.
146
,
243
(
1991
).
22.
G. K.
Lopp
and
J. L.
Kauffman
,
Proc. SPIE
10164
,
101641W
(
2017
).
You do not currently have access to this content.