Thermal transport in the axial direction of polymers has been extensively studied, while the strain effect on the thermal conductivity, especially in the radial direction, remains unknown. In this work, we calculated the thermal conductivity in the radial direction of a crystalline polyethylene model and simulated the uniaxial strain effect on the thermal conductivity tensor by molecular dynamics simulations. We found a strong size effect of the thermal transport in the radial direction and estimated that the phonon mean free path can be much larger than the prediction from the classic kinetic theory. We also found that the thermal conductivity in the axial direction increases dramatically with strain, while the thermal conductivity in the radial direction decreases with uniaxial strain. We attribute the reduction of thermal conductivity in the radial direction to the decreases in inter-chain van der Waals forces with strains. The facts that the chains in the crystalline polyethylene became stiffer and more ordered along the chain direction could be the reasons for the increasing thermal conductivity in the axial direction during stretching. Besides, we observed longer phonon lifetime in acoustic branches and higher group velocity in optical branches after uniaxial stretching. Our work provides fundamental understandings on the phonon transport in crystalline polymers, the structure-property relationship in crystalline polymers, and the strain effect in highly anisotropic materials.

1.
M. C.
Scharber
,
D.
Mühlbacher
,
M.
Koppe
,
P.
Denk
,
C.
Waldauf
,
A. J.
Heeger
, and
C. J.
Brabec
,
Adv. Mater.
18
,
789
(
2006
).
2.
M.
Alexandre
and
P.
Dubois
,
Mater. Sci. Eng., R
28
,
1
(
2000
).
3.
D. E.
Tallman
,
G.
Spinks
,
A.
Dominis
, and
G. G.
Wallace
,
J. Solid State Electrochem.
6
,
73
(
2002
).
4.
A. S.
Aricò
,
P.
Bruce
,
B.
Scrosati
,
J.
Tarascon
, and
W.
Van Schalkwijk
,
Nat. Mater.
4
,
366
(
2005
).
5.
Z.
Han
and
A.
Fina
,
Prog. Polym. Sci.
36
,
914
(
2011
).
6.
A.
Henry
,
G.
Chen
,
S. J.
Plimpton
, and
A.
Thompson
,
Phys. Rev. B
82
,
144308
(
2010
).
7.
T.
Zhang
and
T. F.
Luo
,
ACS Nano
7
,
7592
(
2013
).
8.
A.
Henry
and
G.
Chen
,
Phys. Rev. B
79
,
144305
(
2009
).
9.
A.
Henry
and
G.
Chen
,
Phys. Rev. Lett.
101
,
235502
(
2008
).
10.
S.
Shen
,
A.
Henry
,
J.
Tong
,
R.
Zheng
, and
G.
Chen
,
Nat. Nanotechnol.
5
,
251
(
2010
).
11.
T.
Zhang
,
X.
Wu
, and
T.
Luo
,
J. Phys. Chem. C
118
,
21148
(
2014
).
12.
X.
Xiong
,
M.
Yang
,
C.
Liu
,
X.
Li
, and
D.
Tang
,
J. Appl. Phys.
122
,
035104
(
2017
).
13.
X.
Wei
,
T.
Zhang
, and
T.
Luo
,
Phys. Chem. Chem. Phys.
18
,
32146
(
2016
).
14.
H.
Ma
and
Z.
Tian
,
Appl. Phys. Lett.
110
,
091903
(
2017
).
15.
J.
Liu
and
R.
Yang
,
Phys. Rev. B
86
,
104307
(
2012
).
16.
T.
Zhang
and
T.
Luo
,
J. Appl. Phys.
112
,
094304
(
2012
).
17.
V.
Rashidi
,
E. J.
Coyle
,
K.
Sebeck
,
J.
Kieffer
, and
K. P.
Pipe
,
J. Phys. Chem. B
121
,
4600
(
2017
).
18.
Y.
Lu
,
J.
Liu
,
X.
Xie
, and
D. G.
Cahill
,
ACS Macro Lett.
5
,
646
(
2016
).
19.
Z.
Wei
,
J.
Yang
,
W.
Chen
,
K.
Bi
,
D.
Li
, and
Y.
Chen
,
Appl. Phys. Lett.
104
,
081903
(
2014
).
20.
G.
Fugallo
,
A.
Cepellotti
,
L.
Paulatto
,
M.
Lazzeri
,
N.
Marzari
, and
F.
Mauri
,
Nano Lett.
14
,
6109
(
2014
).
21.
X.
Gu
,
B.
Li
, and
R.
Yang
,
J. Appl. Phys.
119
,
085106
(
2016
).
22.
H.
Zhang
,
X.
Chen
,
Y.-D.
Jho
, and
A. J.
Minnich
,
Nano Lett.
16
,
1643
(
2016
).
23.
P.
Jiang
,
X.
Qian
,
X.
Gu
, and
R.
Yang
,
Adv. Mater.
29
,
1701068
(
2017
).
24.
X.
Li
,
K.
Maute
,
M. L.
Dunn
, and
R.
Yang
,
Phys. Rev. B
81
,
245318
(
2010
).
25.
R.
Tu
,
Q.
Liao
,
L.
Zeng
,
Z.
Liu
, and
W.
Liu
,
Appl. Phys. Lett.
110
,
101905
(
2017
).
26.
See http://accelrys.com/products/materials-studio/ for “Accelrys Software and Materials Studio v 8.0.” Inc.
27.
J.
Liu
and
R.
Yang
,
Phys. Rev. B
81
,
174122
(
2010
).
28.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
29.
Z.
Wang
and
X.
Ruan
,
J. Appl. Phys.
121
,
044301
(
2017
).
30.
31.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
32.
J.
Zhang
,
Y.
Hong
,
X.
Wang
,
Y.
Yue
,
D.
Xie
,
J.
Jiang
,
Y.
Xiong
, and
P.
Li
,
J. Phys. Chem. C
121
,
10336
(
2017
).
33.
X.
Wang
,
M.
Kaviany
, and
B.
Huang
,
Nanoscale
9
,
18022
(
2017
).
34.
G.
Chen
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(
Oxford University Press
,
2005
).
35.
W.
Li
,
J.
Carrete
,
N.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
(
2014
).
36.
T.
Luo
,
K.
Esfarjani
,
J.
Shiomi
,
A.
Henry
, and
G.
Chen
,
J. Appl. Phys.
109
,
074321
(
2011
).
37.
C.
Carbogno
,
R.
Ramprasad
, and
M.
Scheffler
,
Phys. Rev. Lett.
118
,
175901
(
2017
).
38.
M. S.
Green
,
J. Chem. Phys.
20
,
1281
(
1952
).
39.
M. S.
Green
,
J. Chem. Phys.
22
,
398
(
1954
).
40.
K.
Kurabayashi
,
Int. J. Thermophys.
22
,
277
(
2001
).
41.
B. M.
Lee
,
S.
Munetoh
, and
T.
Motooka
,
Comput. Mater. Sci.
37
,
198
(
2006
).
42.
H.
Babaei
,
P.
Keblinski
, and
J. M.
Khodadadi
,
Int. J. Heat Mass Transfer
58
,
209
(
2013
).
43.
P. H.
Hermans
,
Contribution to the Physics of Cellulose Fibres
(
Elseview Publishing Company, Inc
.,
London
,
1946
).
44.
T.
Zhang
and
T.
Luo
,
J. Phys. Chem. B
120
,
803
(
2016
).
45.
J. A.
Thomas
,
J. E.
Turney
,
R. M.
Iutzi
,
C. H.
Amon
, and
A. J. H.
McGaughey
,
Phys. Rev. B
81
,
081411
(
2010
).
46.
J. M.
Ziman
,
Electrons and Phonons
(
Oxford
,
New York
,
2001
).

Supplementary Material

You do not currently have access to this content.