Hydrogen-terminated diamond possesses a quasi two-dimensional, sub-surface hole accumulation layer with a strong and tunable spin-orbit coupling due to surface transfer doping. We report a magnetoresistance study of the phase coherent backscattering (weak localization and antilocalization) at low temperatures. The response to an external magnetic field is highly anisotropic, confirming the 2D nature of the carriers despite the short mean free path. By simultaneously applying perpendicular and parallel magnetic fields, we are able to probe the Zeeman interaction and microroughness of the quantum well at the diamond surface. From a quantitative analysis of magnetoresistance curves at 2.5 K, we derive a hole g-factor of 2.6±0.1 and rms fluctuations in the width of the hole quantum well of about 3 nm over the phase coherence length of 33 nm. Well width fluctuations are ascribed to surface roughness and to lateral fluctuations in carrier density, which self-consistently determines the width of the confining potential.

1.
D. D.
Awschalom
and
M. E.
Flatté
,
Nat. Phys.
3
(
3
),
153
159
(
2007
).
2.
S.
Datta
and
B.
Das
,
Appl. Phys. Lett.
56
(
7
),
665
667
(
1990
).
3.
S.
Wolf
,
D.
Awschalom
,
R.
Buhrman
,
J.
Daughton
,
S.
Von Molnar
,
M.
Roukes
,
A. Y.
Chtchelkanova
, and
D.
Treger
,
Science
294
(
5546
),
1488
1495
(
2001
).
4.
R.
Winkler
,
S.
Papadakis
,
E. De
Poortere
, and
M.
Shayegan
,
Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems
(
Springer
,
2003
).
5.
K.-H.
Kim
,
D.-S.
Um
,
H.
Lee
,
S.
Lim
,
J.
Chang
,
H. C.
Koo
,
M.-W.
Oh
,
H.
Ko
, and
H.-J.
Kim
,
ACS Nano
7
(
10
),
9106
9114
(
2013
).
6.
H. C.
Koo
,
J. H.
Kwon
,
J.
Eom
,
J.
Chang
,
S. H.
Han
, and
M.
Johnson
,
Science
325
(
5947
),
1515
1518
(
2009
).
7.
D.
Liang
and
X. P.
Gao
,
Nano Lett.
12
(
6
),
3263
3267
(
2012
).
8.
J.
Nitta
,
T.
Akazaki
,
H.
Takayanagi
, and
T.
Enoki
,
Phys. Rev. Lett.
78
(
7
),
1335
(
1997
).
9.
F.
Maier
,
M.
Riedel
,
B.
Mantel
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. Lett.
85
(
16
),
3472
(
2000
).
10.
G.
Akhgar
,
O.
Klochan
,
L. H.
Willems van Beveren
,
M. T.
Edmonds
,
F.
Maier
,
B. J.
Spencer
,
J. C.
McCallum
,
L.
Ley
,
A. R.
Hamilton
, and
C. I.
Pakes
,
Nano Lett.
16
(
6
),
3768
3773
(
2016
).
11.
M. T.
Edmonds
,
L. H.
Willems van Beveren
,
O.
Klochan
,
J.
Cervenka
,
K.
Ganesan
,
S.
Prawer
,
L.
Ley
,
A. R.
Hamilton
, and
C. I.
Pakes
,
Nano Lett.
15
(
1
),
16
20
(
2014
).
12.
G.
Minkov
,
A.
Germanenko
,
O.
Rut
,
A.
Sherstobitov
,
L.
Golub
,
B.
Zvonkov
, and
M.
Willander
,
Phys. Rev. B
70
(
15
),
155323
(
2004
).
13.
C.
Verona
,
W.
Ciccognani
,
S.
Colangeli
,
E.
Limiti
,
M.
Marinelli
, and
G.
Verona-Rinati
,
J. Appl. Phys.
120
(
2
),
025104
(
2016
).
14.
M.
Edmonds
,
M.
Wanke
,
A.
Tadich
,
H.
Vulling
,
K.
Rietwyk
,
P.
Sharp
,
C.
Stark
,
Y.
Smets
,
A.
Schenk
, and
Q.-H.
Wu
,
J. Chem. Phys.
136
(
12
),
124701
(
2012
).
15.
K.
Goh
,
M.
Simmons
, and
A.
Hamilton
,
Phys. Rev. B
77
(
23
),
235410
(
2008
).
16.
R.
Winkler
,
H.
Noh
,
E.
Tutuc
, and
M.
Shayegan
,
Phys. Rev. B
65
(
15
),
155303
(
2002
).
17.
B.
Habib
,
E.
Tutuc
,
S.
Melinte
,
M.
Shayegan
,
D.
Wasserman
,
S.
Lyon
, and
R.
Winkler
,
Appl. Phys. Lett.
85
,
3151
(
2004
).
18.
G.
Bergmann
,
Phys. Rep.
107
(
1
),
1
58
(
1984
).
19.
W.
Knap
,
C.
Skierbiszewski
,
A.
Zduniak
,
E.
Litwin-Staszewska
,
D.
Bertho
,
F.
Kobbi
,
J.
Robert
,
G.
Pikus
,
F.
Pikus
, and
S.
Iordanskii
,
Phys. Rev. B
53
(
7
),
3912
(
1996
).
20.
B. L.
Altshuler
,
A.
Aronov
, and
D.
Khmelnitsky
,
J. Phys. C: Solid State Phys.
15
(
36
),
7367
(
1982
).
21.
A.
Mal'shukov
,
V.
Shlyapin
, and
K.
Chao
,
Phys. Rev. B
60
(
4
),
R2161
(
1999
).
22.
J. S.
Meyer
,
A.
Altland
, and
B. L.
Altshuler
,
Phys. Rev. Lett.
89
(
20
),
206601
(
2002
).
23.
M.
Edmonds
,
C.
Pakes
, and
L.
Ley
,
Phys. Rev. B
81
(
8
),
085314
(
2010
).
24.
Y.
Takahide
,
H.
Okazaki
,
K.
Deguchi
,
S.
Uji
,
H.
Takeya
,
Y.
Takano
,
H.
Tsuboi
, and
H.
Kawarada
,
Phys. Rev. B
89
(
23
),
235304
(
2014
).
You do not currently have access to this content.